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Abstract. We present work done within the Grid ENabled Integrated Earth system model
(GENIE) project to take the original, complex, tightly-coupled Fortran earth modeling ap-
plication that has been developed by the GENIE team and enable it for execution within
a component-based execution environment. Further we have aimed to show that by repre-
senting the application as a set of high-level Java Web Service components, execution and
management of the application can be made much more flexible. We show how the applica-
tion has been built into higher-level components and how these have been wrapped within
the Java Web Service abstraction. We then look at how these components can be composed
into workflows and executed within a Grid environment.
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1 Introduction

Modularity and component wise construction
is a central feature of all grid systems. Grids
provide simplified execution of large-scale sci-
entific applications, across multiple computa-
tional resources and organisations. The Grid
ENabled Integrated Earth system model (GE-
NIE) is a climate model simulation developed
under the NERC-funded GENIE and GENIEfy
projects. This computationally intensive appli-
cation, written in Fortran, is ideally suited
to Grid environments. However the existing,
tightly-coupled, sequential application model
cannot take advantage of the benefits of Grid
systems.

We present work undertaken to modify the
GENIE model allowing the existing Fortran im-
plementation to take advantage of Grid execu-
tion features. GENIE consists of a set of mod-
ules simulating various earth entities (e.g. at-
mosphere, sea-ice etc.). Entities may have mul-
tiple module implementations that are coupled
to produce a complete representation of an earth
simulation. We present an abstract component
model used to wrap the existing GENIE mod-
ules into higher-level components, taking into
account features of the existing framework that
present difficulties for traditional component
models. Rather than rewriting the application
from scratch in a higher-level language such as

Java, an unreasonably complex task, we wrap
the existing code in Java wrappers and show
how the resulting components can be composed
into workflows that may be executed through
Grid middlewares.

The rest of the paper is as follows: section 2
discusses in more detail the structure of the GE-
NIE application and some basic features of its
architecture and implementation. Some previ-
ous work is summarised. Section 3 provides the
neccessary background on grid-enabled compo-
nent architectures. In the following section our
visionary model for GENIE is presented and ex-
plained in detail. In section 5 some issues and
technical details on how we have been working
towards wrapping up GENIE modules in order
to move closer to the goal are discussed. Last,
Section 6 concludes and discusses further work.

2 Earth System Models and
GENIE

2.1 General Description

GENIE [2] is a scalable modular platform aim-
ing to simulate the long term evolution of
the Earth’s climate. Building an Earth system
model (ESM) involves the coupling of a set of
specialised components. Thus, distinct earth en-
tities such as the atmosphere, the ocean, the



land, the sea-ice etc., referred to from now on
as earth modules or just modules, are modelled
independantly, using specified meshes of data
points to represent the boundary surfaces, and
conform to the natural laws of physics that gov-
ern the exchange of energy and fluxes from one
to another.

One of the architectural characteristics of
GENIE is that it is designed so as to consist
of more than one implementation (instance) of
an earth element in the case of the atmosphere,
ocean, land and sea-ice. Furthermore, scientists
are able to choose to experiment with several
simulation scenarios (configurations) compris-
ing of combinations of such implementations.
The way this was implemented is through a sep-
arate program, “genie.F”, which is responsible
for the control and execution of each module,
the attribute passing between the chosen ones
and the appropriate interpolations of the data
exchanged, through interpolation functions. In
fact, all possible cases of configurations are han-
dled through the “genie.F” with the use of flags,
being switched on/off to specify the use of which
implementation of a module.

As new modules are actively being re-
searched and developed, it is desirable for the
GENIE community to have the flexibility to
easily add, modify and couple together GENIE
modules and experiment with new configura-
tions, without undue programming effort. De-
spite significant progress in the GENIE commu-
nity, the desired result is far from reality.

2.2 Previous work

Several milestones towards the advance of the
GENIE framework have been achieved. The first
task was to separate the tightly coupled Fortran
code into distinct pieces each representing an en-
vironmental module (atmosphere, land, ocean,
ocean-surface, chemistry, sea-ice, etc). The main
piece of code handling and coupling the mod-
ules was disengaged and formed the so-called
“genie.F” top program.

Efforts in gradually moving GENIE towards
a grid environment have been made in the past,
most importantly allowing the execution and
monitoring of many ensemble experiments in
parallel [4, 6], reducing the overall execution
time. Though, they all deal with a subset of the
gridification issues and serve the isolated current
at that time needs of the scientific community.

Previous work also includes research into the
way the ICENI [3] framework can be used to
run parameter sweep experiments across multi-
ple Grid resources [5].

Lastly, there have been efforts into wrapping
up each of the basic Earth modules using the
JNI [7] library, which led to unexpected compli-
cations and unjustified amounts of effort, lead-
ing us to look into a more efficient solution.

3 Component-based Frameworks

The basic reason why the design of GENIE has
not achieved desired level of modularity, which
is the objective, is that it is fundamentally re-
stricted by the use of Fortan as a scientifically
efficient language [8].

The component programming model is the
latest stage of a natural progression, starting
from the monolithic application, and moving to-
wards applications built from increasingly more
modularised pieces, with one addition, the cou-
pling framework. Components are designed to
be protected from changes in the software envi-
ronment outside their boundaries.

Thus, a component can be described as a
’black box’, fully specified by its function spec-
ification and the input/output type patterns of
the data (ports). The fact that a component
is interfaced with other modules/systems only
through its input/output ports (and is otherwise
shielded from the rest of the world) allows big-
ger applications to be designed, implemented,
and tested, independently of everything else.

The coupling framework within component
architecture is a system defining the bindings
between the components in a clear and com-
plete way and providing information about the
run-time environment. It can include connec-
tors which perform the direct “binding” of the
ports of two components or even more compos-
ite operations on the input/output/inout ports.
Finally, a configuration of components may be
(re)used as an individual component in another
(sub) framework.

In this context, an application like GENIE
may be composed (assembled) at run-time from
components selected from a component pool. A
component-based approach to GENIE would en-
able a user to fully exploit parallel execution
of the system. Furthermore, by having seperate
layers of software development as such, the con-
figuration and desired behaviour of the simula-



tion model can be easily defined and modified
by the user.

One of the desires of the GENIE community
has been to experiment with the order of exe-
cution of the earth modules. With the current
system, this is hard to achieve. Our component-
based approach allows to easily modify the exe-
cution order of the components and the starting
order of the components giving a possibility to
a user to further test the robustness of the sim-
ulation method.

An example of an ideal composition en-
vironment would be the Imperial College e-
Science Networked Infrastructure (ICENI) [3].
ICENI is a pioneering Service Oriented Archi-
tecture (SOA) and component framework devel-
oped at the London e-Science Centre, Imperial
College London. Within the ICENI model an
abstract component can have several differing
implementations. Associated with each compo-
nent is metadata describing its characteristics.
At deployment, this metadata is used to achieve
the optimal selection of component implementa-
tion and execution resource in order to minimise
overall execution time given the Grid resources
currently available.

4 A Grid Model for GENIE

4.1 Abstract Component Model

Within the ICENI model, semantically equiva-
lent components have the same interface. In fact
there need only be one semantically equivalent
abstract component, concrete implementations
inherit from this. In earth modelling systems
such as GENIE, however, different implemen-
tations of a semantically equivalent earth entity
module may have differing interfaces. For exam-
ple, one ocean model may incorporate salinity
while another does not. However, they are both
ocean models and should be interchangable. We
therefore extend the ICENI philosophy to pro-
vide different mechanisms whereby similar mod-
els but with differing interfaces can be used in
an interchangable fashion. We do this by extend-
ing the notion of an interface by wrapping the
module with plugin adapters to accomodate the
different interfaces. We describe this interface
model and show how the implementation can
be achieved through Babel [1].

4.2 Extended Abstract Component
Model

To realise this model we define four key ques-
tions which we then look at in greater detail:

• How are abstract models linked/composed?
• How is a GENIE system comprising various

models assembled?
• How is GENIE system deployed in a dis-

tributed dynamic environment?
• How do GENIE models communicate with

each other?

In order to compose abstract models in an
interchangeable manner, it is necessary for the
models to have common interfaces. In the case
of GENIE, it is possible to encounter situa-
tions where semantically equivalent modules,
that should in theory be interchangeable, can-
not be substituted due to differing interfaces.
We tackle this issue by defining a pluggable ab-
stract interface that allows the knowledge of the
module developer to be encapsulated within a
’plugin’.

To build a GENIE system from a given set of
modules it is necessary to compose the modules
in a semantically valid format. Using component
metadata, an idea utilised extensively in ICENI
components, we can annotate the GENIE com-
ponents with information that determines their
composability.

By wrapping GENIE components in a Java
Web Service wrapper, it is possible to deploy
the components in a service container allowing
them to communicate using standard Web Ser-
vice protocols. The use of Web Service stan-
dards provides mobility and allows the location
of component deployment to be determined at
application run time. The deployment of GE-
NIE in a distributed, dynamic environment is
discussed in more detail in section 5.

The communication between GENIE models
may be accomplished using a variety of methods
dependent on where they are deployed. Com-
ponents deployed on geographically distributed
resources may communicate using Simple Ob-
ject Access Protocol (SOAP) messages over an
HTTP connection, although this may not be the
most efficient. Components that are co-located
within a cluster may use MPI or shared memory
to communicate (figure 1).



Fig. 1. Grid-based efficient model coupling and
deployment

We now describe in more detail the idea of
an abstract component that provides a common
interface to a set of concrete implementations of
a given type of model, even though those imple-
mentations may have differing interfaces. Fig-
ure 2 shows this model at the simplest level.

Fig. 2. A model using abstract interfaces to ac-
cess concrete implementations.

The implementation of this abstract inter-
face uses the idea of transformation plugins. A
transformation plugin is a unit of code that is
developed by the model developer and encapsu-
lates their knowledge of the input and output
format of data that their model accepts or pro-
duces. The plugin acts as a translation layer be-
tween a more general – although still model spe-
cific – interface and the concrete interface pro-
vided by the specific model implementation.

Due to the plugin architecture, we consider
our abstract component interface to be more of
a wrapper for a set of model implementations
rather than simply a standard interface. This
leads to the more detailed layout shown in fig-
ure 3. Our model supports both static, compile
time generation of the abstract wrapper for a
set of models and also dynamic, runtime regis-
tration of new models into the wrapper.

Fig. 3. Abstract interface marshalling requests
to correct concrete implementation through plu-
gin translators.

5 Grid Enabling the GENIE
Application

5.1 Determining Component Ports

In the GENIE structure, each earth module
is represented by a set of files, including For-
tran routines, namelists, input files, netCDF
data files and others. All these elements are
represneted in the GENIE structure separately
for each earth entity, to maintain the modu-
larity of the code. The main functionality of
each earth module is implemented in one sub-
routine. This subroutine requires/passes argu-
ments corresponding to the physical quantities
that the boundaries of the module receive and
process. Furthermore, subroutine files contain-
ing initialisation, restart and finalising processes
for the module are also part of its code struc-
ture. Thus, each physical module has its own
hierarchy with a basic routine as well as initial-
isation/restart/finalisation routines. These rou-
tines are considered to be ”top-level” as they are
the only ones that directly communicate with
the GENIE environment through the “genie.F”
application controller.

In order to describe and access an earth mod-
ule through an interface of a high level language,
identifying the inputs and outputs is essential.
This task, in the case of GENIE, is far from
trivial. Although, as mentioned before, the ar-
guments of the top-level routines are those that



need to be part of the interface, the separation of
these arguments into inputs, outputs and inouts
is difficult. The reason for this is that Fortran
passes all arguments to a routine by reference.
This means that it is very difficult to extract
any information about whether a parameter is
strictly used as read-only part of the memory, or
gets modified during the execution of the spe-
cific piece of code.

During our inspection and detailed analysis
of the GENIE modules, a long and complex task,
the nature and type of the module parameters
was documented. This served not only for our
purposes, but has provided useful input to the
GENIE project for future needs of the scientists
and users of the application. In several cases, a
manual exhaustive in-depth analysis of the code
of a routine, together with the subroutines called
within the code needed to be done in order to
determine whether an attribute is written to,
is of read-only nature, or possibly serves both
read/modify purposes.

5.2 Linking Fortran to Java

In order to form high level components that can
be launched and used as web services we choose
Java to be the main language in which the in-
terfaces of the earth modules will be exposed.

Rewriting them would possibly cause a num-
ber of inaccuracies and most importantly would
cause a disruption in the development of such
a complex scientific application. Therefore, we
choose to wrap each earth module individually
using an efficient and suitable mechanism.

For this purpose we pick Babel [1], an inter-
operability tool which addresses the language in-
teroperability problem in software engineering.
Babel uses a prototype SIDL (Scientific Inter-
face Definition Language) interface description
which describes a calling interface (but not the
implementation) of a particular scientific mod-
ule. Babel, as a parser tool, uses this interface
description to generate glue code (server skele-
ton and client stub) that allows a software li-
brary implemented in one supported language
to be called from any other supported language.

Below we denote some of the advantages
when using Babel, as against other mechanisms,
to wrap up GENIE modules:

• Babel provides all the three kinds of commu-
nication ports used by the GENIE subrou-
tines – inputs, outputs, as well as inouts, the

latter of which requires extra programming
effort to be implemented via other mecha-
nisms (e.g. JNI),

• It minimizes the problems we identified in
[8] when using JNI, such as arrays stored
differently in memory (C/Fortran), float-
ing point numbers, complex structure argu-
ment passing, manual creation of intermedi-
ate “.h” files and programming effort.

• Possible future addition of extra compo-
nents becomes easy, since it provides a stan-
dard mechanism for wrapping up compo-
nents.

• Babel is compatible with most Fortran com-
pilers used by scientists in GENIE.

• An SIDL file can include methods such as
the initialise component, main and finalise,
making it possible to expose all separately
developed subroutines as parts of the same
component, as semantically correct and de-
sired, conforming to the component lifecycle
of modern component architectures.

• An interoperability tool like Babel is par-
ticularly useful to make heterogeneous en-
vironments communicate, since our purpose
is not only to make GENIE modules avail-
able over the web but moreover, to provide
a generic methodology independent of the
component implementation language.

After testing and verifying its suitability for
the project’s needs, we have been using Babel to
wrap a sample of components and make them
accessible from a Java client which is designed
to replace “genie.F”. Throughout this procedure
several complications were encountered but re-
solved.

Firstly, Babel uses its own defined data types
(from here and on referred to as sidl-types) in
the SIDL interface specification that it accepts,
producing code which handles similar data types
in the language specified by the user. Thus, the
code which is generated in Fortran, designed to
access an earth module, needs some additions in
order to serve its purpose. For this reason, sev-
eral external routines “casting” the sidl-types
of data from/to Fortran data types were devel-
oped. In this way, it was made possible to have
a one-to-one correspondence of integers, floating
point numbers, as well as one and two dimen-
sional arrays to and from the equivalent sidl-
types. Having these casting routines, the glue
code can access the top level module routine
by passing the arguments and having them re-



Fig. 4. Wrapping in Babel

turned after the addition of a piece of “cast-
ing” code inside the glue. It needs to be men-
tioned here that in this way, there is absolutely
no need to modify any of the existing module
code in order to access it from the skeleton cre-
ated from Babel. Therefore, just by adding an
additional structure for each module in the tree
code of GENIE containing the SIDL descriptors
and the generated glue code, the maintenance of
the structure is guaranteed. Furthermore, this
does not interfere with any attempt to run the
GENIE application without using the wrapped
modules and the componentised version, but ex-
ecuting it in the old-fashioned way where “ge-
nie.F” handles the modules.

Another feature of Babel is that it works
with the use of shared libraries. The code of
the module gets compiled together with the
glue code to form a library, which then can
be placed independently and accessed through
a client from anywhere on the web. The GE-
NIE application structure already contains the
code of a module in an independent, shared li-
brary. Therefore, it is only sufficient to compile
to glue code against the module library to ensure
the communication of the two, allowing a more
distributed environment where the skeleton ac-
cesses the actual implementation remotely.

We end up with a module wrapping proce-
dure (figure 4) that enables an earth module
(and eventually a whole configuration) to be ac-
cessed by a Java client, in the following simple

stages, which require minimal programming ef-
fort:

• describe the input/output/inout ports of
the module top level Fortran subroutine in
a simple SIDL file

• run Babel parser to create glue code
• connect the top level subroutine of an earth

module to the skeleton by passing the ports
to/from Babel skeleton and to/from subrou-
tine

5.3 Executing GENIE in a Grid
Environment

So far, we have managed to wrap up two sim-
ple GENIE components using Babel and tested
the results returned when calling them from a
simple Java client. Our current activities mainly
include a specific configuration (figure 5) com-
prising the GENIE basic ocean (Goldstein), a
simple atmosphere (Embm) and a simple com-
patible sea-ice (Goldstein sea-ice). We have iso-
lated this case as the most suitable to study and
implement using Web Services. The three earth
modules, together with their initialisation, and
finalisation routines are being described and ac-
cessed through a Java interface and at the same
time a Java client is being developed in order to
access, and couple the components. Initially the
configuration chosen is being tested by direct
access of the interfaces exposed by the wrapped
modules, without the use of Web Services, for
reasons of simplicity.



It needs to be made clear that any com-
ponent composition environment requires every
entity to be in the form of a software compo-
nent. Thus, all the functionality of “genie.F”
must be disguised in a component’s structure
and become part of the data workflow. For ex-
ample, all intermediate interpolation functions
of data exchanged between modules as well as
various functional and non-functional operators
being part of the component composition phase,
should become part of the (GENIE) application
specification phase.

Fig. 5. Configuration to be implemented in Web
Services

Below, we summarise the various enginner-
ing steps which are planned to take place in or-
der to achieve the grid enabling of the GENIE
application using a Web Service-based workflow
within the London e-Science Centre.

1. Wrap up a component in Java using Babel
and test it individually to ensure proper re-
sults during execution.

2. Wrap up all modules for one existing con-
figuration. Then create a Java client to syn-
chronise the components and compare the
results to those produced when executing
“genie.F” over the same configuration.

3. Launch Web Services in place of the original
components and modify the Java client to
call these Web Services instead of the com-
ponents.

4. Create all possible configurations of GENIE
in a similar manner to that shown in the
previous steps.

5. Create the Abstract Component Wrapper
by choosing carefully what the concrete in-
terface will be.

6. Use a workflow engine to orchestrate the Ab-
stract Components in all configurations.

7. Advance the previous stages into a Grid
environment so as to incorporate Co-
ordination Specification, Dynamic Abstract
Code Generation, Resource Allocation and
Optimisation.

Although no thorough experiments over the
efficiency have taken place yet, we expect that
the advantages of this approach far outweight
overhead produced during the execution (con-
version of SIDL to language specific types and
vice versa, data exchange between modules,
data serialisation and trasportation over the
Grid).

6 Conclusions

We have taken the Fortran implementation of
the GENIE earth simulation application and
shown how this can be modified to take ad-
vantage of a service-based computational Grid
execution model. Through analysis of the orig-
inal, tightly-coupled implementation, the com-
ponent interfaces were identified. It was then
possible to apply an abstract component model
to the various earth entity module implementa-
tions to provide substitutable components that
can be composed into workflows for scheduling
and execution on Grid resources. Our imple-
mentation takes the form of a Service Oriented
Architecture utilising Web Services as the ser-
vice model. We have shown that it is possible
to take a complex legacy application and apply
wrapping techniques for service-enabling with-
out the extensive effort that would be required
for a rewrite of the original code in a different
language. The work provides simplified deploy-
ment of GENIE workflows across multiple re-
sources in combination with the opportunity for
improved runtimes that distributed Grid execu-
tion allows. The generic and component-based
nature of this architecture allows it to be ap-
plied into similar legacy system applications. It
provides a language-independant environment
where the rise of newly developed earth com-
ponents can be easily incorporated to the rest
of the application. Our showcase also describes
generic and distinct stages (wrapping, deploying
as web service, abstractly interfacing, interac-
tion specification) in order to advance a legacy
application into a loosely coupled, component-
based application. We intend to continue this
work to service enable further modules within
the GENIE framework.
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