Toward a Formal Characterization of
Policy Specification & Analysis

Arosha Bandarg Seraphin Calg Jorge Lobd, Emil Lupuf, Alessandra Rus$pMorris Slomar
*The Open University, Milton Keynes, MK7 6AA, UK - Email: adandara@open.ac.uk
fIBM Research, IBM T J Watson Research Center, NY, USA - Enfaitalo, jlobd @us.ibom.com
fImperial College London, London SW7 2AZ, UK - Emalfle.c.lupu, a.russo, m.slomp@imperial.ac.uk

Abstract—Policy-based management of the security of a mil- abstract language for refinement and analysis. Our pastiexpe
itary communications network can simplify the configuration ence has indicated that logic languages, while good fooreas
process, while increasing security and availability. An eective ing, are not amenable to efficient implementation, paridyl
policy-based approach requires analysis of policies for iconsis- ' .
tencies, and for desired security properties. It also must pvide on small hland-held devu_:es. Thus abstract. POI'C'ES rr]ust be
for the refinement of high-level security goals into concre¢ translated into concrete implementable policies desdribe
policies. This paper defines a language based on first-ordeodgic languages such as Ponder[1] or XACML][2].
formulae containing explicit time arguments which is expresive This paper focuses on the intermediate abstract policy
enough for specifying a range of authorization and obligabn |3nq,age that requires a powerful logic-based formalisth wi

security policies, while supporting the formalisms and auvbmated - . . . L
tools needed for analysis and refinement. Both system behavi available reasoning tools, based on which techniques dimgi

and the semantics of the policies themselves are defined inpOHCY ana_'VSiS and refinement 9an_be deVe'PPEd- Our previou
terms of execution traces, to enable reasoning about algehimic ~ work in this area used a formalization of policies based @n th

solutions to policy analysis. The paper also proposes someEvent Calculus [3], but there was no a priori consideration
analysis tools based on the use of logical abduction. of the complexity and computability properties. As a result
. INTRODUCTION it was necessary to reverse engineer various restrictichos i

Secure, reliable and adaptable communications is neecﬁlaﬁd Iar}guage Itn orde(rj to en1s_ﬁre tractiblht):j Otf thel anaIyS|sh
to support dynamic mission-based coalitions of partnemfr and refinement procedures. The more foundational approac

different military and non-military organizations. If therong of [4] and [5] uses formalisms for policy with well defined

information is communicated to the wrong person/device, q{,)rr;pllex(;ty r_efsults,dbasedt odn stat|((j: po“?’ modells Wherets_ai:c f
could cost the lives of the personnel involved in the missio ontrol decisions do not depend on temporal properties o

Likewise, if the right information is not communicated ané. e system. Additionally, their work does not support aaiig

shared with the right people, it could also lead to loss (Ban policies, which are often required to implement setguri

lives. Policy-based security management should enable nmechanisms. These limitations restrict the type O.f paditiat
itary personnel to specify security requirements in terrhs gan be expressed, and preclude the use of their approach for

simple, intuitive goals which are translated into the ceter practical policy-based security management applications

system settings in such a way that the system behaves in (j[he Wobrk gr?_sgnted :n this paper addresses thehs? sgortl-
consistent and desirable way. The objective is to minimize'NYS by delining a language expressive enougn 1o dea

the technical expertise required by military personnekl aﬁN'th a range of security policy requirements, and tractable

to automate policy management as far as possible. Thistcfsfac'l'tate automation of the analysis process. Our tazin

dependent on being able to specify and analyze policies Bproach is based on developing a foundational treatment of

ensure that they prescribe correct and desirable beh&aor. the behavior of policies, and using this as a basis to reason

example, inconsistencies should not arise because thalaleai about algprlthm|c SOIU.“O”S _to policy analysis. We will als
. extend this to deal with refinement as future work. System

communication devices cannot support the specified pelimeb havior is defined in t ¢ tiont finDutgest
We assume that military personnel specify goals using §avioris detined in terms of execution traces of INPUEses
d outputs of the system at each logical point in time. We use

structured natural language aimed at non-technical peot nout. stat d output bols in th t ‘o defi
Goals are automatically translated into a formal, logisdzh . € Inpul, state and output Symbols In hese traces 1o define
first-order logic formulae containing explicit time arguntgto

Research was sponsored by the U.S. Army Research Laboratorthe specify authorization and obligation policies. The seritarf

U.K. Ministry of Defence and was accomplished under Agresntéumber these formulae are defined in terms of the system execution
W911NF-06-3-0001. The views and conclusions containedhim document

are those of the author(s) and should not be interpreted presenting the traces. Our formulae Conta_'m _eXp|ICIt time arguments, eath)
official policies, either expressed or implied, of the U.Sm& Research than standard temporal logic, in order to keep our language i

Laboratory, the U.S. Government, the U.K. Ministry of Deferor the U.K. the realm of |OgiC programs. This allows us to use abductive
Government. The U.S. and U.K. Governments are authorizeeptoduce and

distribute reprints for Government purposes notwithstamdany copyright reasoning to _analyze polllcy speC|f|cat|ons, as well as bemg
notation hereon. more expressive than using temporal logic operators [6].

The paper is organized as follows: Section 2 defines basitomic ground input formulas i£. When this is clear from
terms and concepts used in our formal policy language; Sé¢lee context we will drop any reference th
tion 3 gives the syntax and semantics of this language feltbw Example 2:Extending example 1, we define an input
by examples to demonstrate its capabilities and limitatiopredicate symbol:ireq; a single state predicate symbol:
in section 4; Section 5 discusses the analysis capabibifiesdataProperty, and two output predicate symboldo and
our language together with some directions for future workleny. We have three constant symbolfice, bob, charlie
Section 6 presents some related work on formalizing securéind david; and three function symbolsz, securityLevel
policies; and, finally section 7 presents our conclusiond aandlocation. A few elements inZ., Sz, Or:

summarizes our plans for developing this approach further.
ig = {req(alice, tx(bob, location(charlie), security Level(high)))},
so = {dataProperty(location(charlie), securityLevel(high))},
Il. DEFINITIONS oo = {do(alice, tx(bob, location(charlie), security Level(high)))},
}

. i1 = {req(bobd, tx(david, location(charlie), security Level(low)))},
A system is said to comply with a policy if it acts accordings, = {dataProperty(location(charlie), securityLevel (low))}

to the behavior specified by the policy. A simple characterier = {deny(bob, tz(david, location(charlie), security Level(low)))}
zation of the system is thus needed to determine whether it .
complies with the policy. 'A pos)&(ple trac)e of our sample system could be
. . . 10,50,00),\?1,51,01)-

We will assume th‘fflt atany time a s.ystem.can _be in one |PnceO thoe purpose of a policy is to characterize the comiplian
a given set ofstateswnlh. system behavior defined n terms o ehaviors of a system we will formally define policies as
.hOW the system transitions thrgqgh states over time. S3$ternéstrictions over the possible tracds Hence, a policyP
interact with the world by receivingiputs which may result defines a subset of acceptable traesi(P) that model the
in state changes and the generationoafputs Inputs come policy: mod(P) C T
from external entities and cannot be controlled by the syste Exémple 3N 01.Jr example if we have a policy
Thus, we characterize the behavior of a system in terms of\i,\tﬁ]ere Bob is not allowed to send Alice’s location in-
state transitions and outputs, in reaction to its inputs.

formation to Charlie, then there cannot be a trace
Formally, we have three set§, S, O of Inputs States with a triple (i,s,0) in which an atom of the form

and Outputs and define the set of tracés with respect to do(bob, tz(charlie, location(alice), securityLevel (X)) is in
Z,8,0 as the set of finite or infinite sequences of trlpleg with X either equal tchigh or low

(i0; 80, 00), (i1, 81,01), ..., Whereiy € T,s), € S,05 € We can now formally define policy compliance.
foranyk € N. A systemSys is defined (characterized) by @ - pefinition 1: A system Sys complies with a policyP iff
subset of7, Sys C 7, the set of all its possible behaviors. g, ¢ « ,04(P). We will denote this bySys = P.

Example 1:As an example, consider a secure communicgy practice, we start with a system whose behavior is modified
tions system which accepts as inputs requests to transenit gy policies which may change over time. Ttiemain descrip-
location information of specific military personnel. Outpof tion is a core set of system constraints, that are invariants on
the system would be transmissions of the requested locatiga system behavior regardless of changes due to polices. F
information or denials if the policy for the current statetlbé example, if the communications system supports a super user
system does not permit the user to perform the request. \who is allowed to transmit any data item in any situation,

We assume a typed first order logic languadeith typed policies cannot force changes to this core constraint. The
variables, constant and function symbols, and with a set @main description also defines the set of operations tleat th
typed predicate symbols partitioned into three seténput system supports and a policy cannot introduce new opegation
predicate symbo)s S (state predicate symbglandO (output or dictate the input behavior of the system. In other words,
predicate symbo)s Function and predicate symbols have agithough the domain description may say something about
assignedarity which is a non-negative integer. #erm is input behavior, policies cannot modify it. In essence a dama

recursively defined as a variable, a constantf@#,...,t,) description defines systems that are correct.
if fis a function symbol of arity» and eacht;. is a term of the Definition 2: Given a set of trace¥, a domain description
appropriate typep(ti,...,t,) is anatomic formulaor atom D is a subset of the power set @ D C 27. We say that a

if p is a predicate symbol of arity > 0 and eacht;, is a term systemSys behaves according to the domdiniff Sys € D.
of the appropriate type. Formulae can be formed using theExample 4:An input/ouput automata (e.g., a Mealy
standard logical connectors, A, V, ... and the quantifiers machine) can be used to describe the domain of a system.
andd. An input formulaonly has input predicate symbols and-igure 1 shows a automaton representing the domain of the
similarly for Stateandoutputformulae . Agroundterm does communication system described previously. The tramstio
not have variable occurrences and a (atomic) formula has inchis state chart show that traceslincan contain only triples
variable occurrences. {({req(...,tx(...))}, {dataProperty(...)},{do(...)}),

For a typed first order language we define an input in ({req(...,tx(...)}), {dataProperty(...)}, {deny(...)})}
Z. to be any subset of the atomic ground input formulas iwhere each trace can be obtained by instantiating the Vesiab
L; a states in S, to be any subset of the atomic ground statesing the values from the finite sets - in this example, the set
formulas in£ and an outpub in O, to be any subset of the of users, locations and security levels.

req(Subj, tx(From, To, Data, securityLevel(SL))) /

do(Subj, tx(From, To, Data, securityLevel(SL))) I11. L ANGUAGE SPECIFICATION
Before going into the details of the syntax and semantics
G’a‘apmpe"y@atﬁv securityLevel(SL)) Variable Domains: of the language it may be helpful to explain the notation
From = {alice, bob, charlie, david} . .
To = {alce, bob,charie, david used. Throughout the paper, constants, functions, andcated
. A Doy = et srarie- 4 sumbols begin with a lower-case letter, and variables begin
req(Subj, tx(From, To, Data, securityLevel(SL))) / SL = {high, low} . .
deny(Subj, tx(From, To, Data, securityLevel(SL))) with an upper-case letter. The symtiBlwill generally refer

. . ‘ o to a variable of typdime the symbolX will be used to denote
Fig. 1. Finite state automaton representing the domainriggisn of the a tuple of variables of (possibly different) types, not 'udjhg
example communications system . o '

Time the symbolr to denote a tuple of ground terms of types
different fromTime and the symbad will denote a trace. The
. - . . L e symbolsT and | are used to denote respectively the constant
Domain descriptions dictate valid policies, i.e., if théseno :

Boolean valuedrue and False We assume the typ&Eme to

system from the domain description that complies with tt}gee given by the selV of natural numbers. We will, therefore
policy then the policy cannot be implemented. ' ' '

Definition 3: Given a domain descriptio, a policy P is use0,1,2,3,..., k..., for k> 0 to denote constants of type
. LT . ' Time standard functions-, —, x, to construct terms of type
consistent inD if there is Sys € D such thatSys = P; © s yp

. .) Time and relations=, #, <, <, >, > to define relations over
otherwiseP is inconsistent.

e o Time Greek-letter meta-variables are used to refer in general
In our communications system example it is easy to see that. < and expressions in the language
if we want a system to comply with a policy in whichlice

can sendcontactInfo(...) data then there is no behavioraly athorizations

trace of the system that can implement this policy since) o]
contactInfol(...) is nota type of data specified in the domain There is a general consensus that authorizations typically

description. We can also define policy conflicts in terms dfentify four different entities: a subject to whom the au-
inconsistencies. thorization is being granted, an action (possibly with some

parameters) that defines the right being granted (i.e. thiesu

is authorized to execute the action), a target where theracti
will be executed and an optional condition that must be \estifi
before granting the right to the subject.

;xample 6:Alice can delete classified data files from her

of the system in the same way as the domain descriptio vice if she sends a natification to the supplier of the data
Therefore, we can represent policies in a similar fashion j minutes in advance and the supplier does not respond to

terms of restrictions on the allowable tracesiin the notification asking Alice_ o retain the file.) .
Example 5:For the communications system example, con- Thgre are three operatlon§ or actions mentioned |n’the
sider a policy that states that “Alice is allowed to transmfONCY: notify, delete andretain. We appeal to the reader's
location data that has a low security level to Bob if she useérﬁu't'o.n for the attributes of the predicates and Qperailo
high security level for the transmission, but Bob is not\ata that W!" b_e u_sed' through the e-xam.ple's. The subject of the
to transmit location data to anyone else”. This natural lsuge a_luthorl_zatlon 'Salwei The target IS AI|ce_ S‘.demce W_here the
policy could be enforced using the following concrete pekc file resides. TO speC|fy_ agthonzaﬂon poI|C|e_s we _N'” malee
in a system implementing a language like Ponder2 [1]: of the following domain independent predicates:

Definition 4: Given a domain descriptio, and a collec-
tion of policiesPy, ..., P, such that eacl®; is consistent with
D, the policies are in conflict if there is no syste$ys € D
such thatSys = P; for everyl <i < n.

As described above, policies constrain the possible trac

1) req(Subject, Target, Action, Time)
Policy 1: 2) do(Subject, Target, Action, Time)
Pemgpit Alice —(>Al Bob (X), secLevel(high) 3) deny(Subject, Target, Action, Time)
ransmit(Alice, Bob, location , secLevel(hig
when secLevel(location(X), low) 4) permztted(Sub]ect, Target, /.lctzon., Time)
Policy 2: 5) denied(Subject, Target, Action, Time)
prohibit Bob — Transmit(Bob, «, location(x), *) req is an input predicate symbalp anddeny are output pred-
icate symbols, angermitted anddenied are state predicate
symbols. Intuitively the time argument in all the predicate
can be interpreted as the point in a trace where the predicate
is being evaluated. The example makes use of another group
is high. The second policy prohibits the output trace frofi SUPIECtS:Suppliers of data. In general subjects can also
be targets as in the case Suppliers which are targets of

indicating any transmissions of location data from Bob. . L .)
. . otify. The following is a domain dependent predicate needed
In the next section we introduce a language to formal&

: : - .) g the specification:
specify security policies, i.e., a language to define sets 0 . . .
acceptable traces. Policies will be described using twedyp 1) filedesc(Supplier, Name, Type, Time)
of statementsauthorizationsand obligations The policy can be (partially) described by the followingeul

In this case, the first policy only allows Alice
to transmit high security location data (e.g
do(Transmit(Alice, Bob,location(X)...))) in the output
of a trace only if the security level of the transmission noeth

The constraints in the time arguments are imposed to ensure
do(alice, S, noti fy(delete(F)), To) A filedesc(S, F, class, To)A that the permission to execute an action in a particulae stat
not req(S, F,retain(F), Ty) NTo < Ty < To ANTp —To > 10mins of a trace does not depend on “future” properties of the

— permitted(alice, device, delete(F'), Tz) an1 trace. Condition (3) makes policies hierarchical logicgreoms
which can be evaluated in linear time with respect to the size

The not in the formula has a special (logic programming(—)f the set of policy rules. We will partially lift this condan
like) meaning: for a giversub, tar, act andt and tracer, if |at€r in the paper. _ _
req(sub, tar, act) is noti, where (i, s;, 0,) is the th tuple ~ Given a policy rule P, a ground instance o is a
of o thennot req(sub, tar, act,t) will hold in o. The trace policy rule in which all the variables i are simultaneously
o complies with the policy if for all possible values of rePlaced by ground terms of the appropriate type fiont.et
o, f, to, t1 and t, of the variablesS, O, F, T,, T} and 9round(P) be the set of all ground instances Bf and for
T, respectively, such thato(alice, s, noti fy(o, delete(f)) € @ Policy 1L, 1et ground(Il) be the union of alyound(P) for
o, filedesc(s, f,calss) € Sy, to < t1 < ta, ta — all P € II. To formally define the set of traces specified by a
too > 10mins éna req(s, f retaoin(f) 15_1) holds in o then Policy we will first define when our time extended predicates

permitted(alice, device, delete(f)) € s;,. A system Sys ar€ m_O(_j?”ed by a trace. _

complies with this policy if every trace iSys complies with Def_|n|t|on 6: Let £ be a sorted flrst-order_ language whose

the policy! sorts mglude the set of naturgl numbéfsas.ﬂmesort. LetX
For availability we need to make sure that if the requeB¢ the first-order relational signature 6f given by = I'U

to execute an action appears in the trace of a system and tHe > A gjoynd atonp(7, k) is atime extendedround atom

subject making the request is permitted to execute theractl§ £ If »(Z) is a ground atom inC and is a constant from

the action is executed. We achieve that by adding the fotigwi 1'Mm& Leto = (io, 50, 00), (i1, 51,01), ... be a trace in/” and
domain independentle to our policies, which we call the let ¢ be a time extended ground atom 4h The satisfiability
basic availability policy rule of ¢ at positionk > 0 of the traceo is defined as follows:

req(Sub, Tar, Act, T) A permitted(Sub, Tar, Act,T) « 0,k = p(Z, k) iff p(Z) € ik, wherep is an input predicate
— do(Sub, Tar, Act, T) symbol . _ _
o 0,k =p(Z k) iff p(Z) € s, wherep is a state predicate
symbol
o 0.k = p(@,1,k) iff p(Z,t) € sp, Wherep is a state
predicate symbol
o 0,k = p(& k) iff p(&) € or, wherep is an output

Before we define basic policies we need to introduce the
concept of time constraints. An expressioh of the form
71 op 1o Where 7; is either a constant or variable of type

Time or an arithmetic expression built using, —, Time .
constants andime variables, andp is one of the operators predicate symbol _
=, #,<,<,>,>, is referred to as éime constraint It ¢ = p1(Z1, k1) A Apn(Zn, kn), theno = ¢ iff o, k; |=
Definition 5: A basicpositive authorization policy rules a ?i (&, ki), for everyi, 1 <i <n. _ _
formula of the form: Definition 7: Let C' = i op j be a ground time constraint
whereop is one of the operators, <, <,>,>, and leto be
Li ALy ACy A Cry — permitted(S, R, A, T) atrace in7 . C is said to be satisfied in, denoted a® |= C,

where all the following properties hold: if_and_only it an_dj are position; inz such thati op j. If _
eitherq or j are arithmetic expressions they are evaluated with
1) n>0andm > 0. the usual meaning.
2) EachL; is either an atom or an atom preceded DY pormally, the set of traces specified by a basic policy is
not extended with an extraime argument. characterized by a special class of traces cafiagported
3) No predicate in thel;s can bepermitted. traces, which are defined as follows.

4) EachC; is a time constraint, _ Definition 8: Let Il be a policy. A trace o0 =

5) All variables appearing in the time constraints must als(go’ $0,00), (i1, 51,01), ... is calledsupported byl if for each
appear in a non-time constraint atom in the rule. k > 0, for every ground atomic literall € s, or A € oy

6) For the extra argumertt; of eachL; it must hold that 4t can pe formed with predicate symbols from the sk,
T; < T either implicitly because they are part of thepermz’tted} there existsp such thatg — A € ground(Il)
constraints or becauge, A- - -AC,,, implies the relation. ando = ¢.

7) If the predicate in_; is do the relation must b&; < T. The traces inmod(Il) for a setll = Py, ..., P, of policy

8) S R, A, T are terms of type Subject, Target, Action angh s will be supported traces satisfying each policy rule

Time respectively. P;. If we consider the policy rule (lll.1) with the basic

A basic policyll is a set of positive authorization policy rulesavailability policy rule, a trace containing a tuplé., s, ox)
together with the basic availability policy rule. such asdo(alice, supplier, noti fy(delete(file))) € oy is

only supported if
1Depending on the granularity dfime the expressionlOmins will be
replaced by the right constant. permitted(alice, supplier, noti fy(delete(file))) € sy

since only the basic availability policy rule can support T, < T either implicitly because they are part of the
constraints or becauge; A- - -AC,,, implies the relation.
7) If the predicate in_; is do the relation must b&; < T.

Definition 9: Let IT be a policy andr be a supported trace 8) S R, A, T' are terms of type Subject, Target, Action and

do(alice, supplier, noti fy(delete(file)))

by TI. The traces satisfiesIT, denoteds |= I, if and only if Time respectively.
for everyp — A € ground(Il) such that |= ¢, theno = A. A basic authorization policyI is extended to be a set of
Let mod(IT) = {o|o = II}. positive and negative authorization policy rules togethih

Because of its direct correspondence to hierarchical logite positive availability rule.
programs we can implement monitors that can evaluate pofo cover the semantics of negative authorizations we only
cies in linear time with respect to the size of the policy. need to add to the sdido, permitted} of supported traces
Note that the policy in our example does not specify howe predicate symbalfenied, and if the negative availability
to treat a request for aotify. The definition of a supported rule is also part of the policy the predicate symbdehy.
trace for the policy does not let any subjett a notify. with the possibility of negative and positive authoriza-
A possibility would be to permit all actions not explicitlytions we can reach states in supported traces in which both

described by basic policy rules. Before introducing suchle r permitted(sub, tar, act) and denied(sub, tar, act) apply for
we must close the permits fdelete, i.e. indicate whichlelete g given subjectsub, targettar and actionact. The pos-

operations are denied, using the following rule: itive availability rule gives priority todenied (i.e. denied
Filedesc(Sub, Sup, F, class, T)A overrides permitted). To give priority to permitted we
not permitted(Sub, system, delete(F),T) just need to reintroduce the basic availability rule and add

— denied(Sub, system, delete(F), T) notpermitted(Sub, Tar, Act, T) to the condition of the neg-

We are leaving opetielete actions that miaht be applied tc)ative availability rule. Furthermore, we can have a more
9 op 9 bp ranular control over these priorities. We could, for ex&mp

nor_1-cIaSS|f|ed dat_a. We can now cI_ose_ _the perml_ts for all tﬁ%\ve different default rules for different actions. We josed
actions by replacing the basic availability rule with thewvne

o -) to specify the given action in the availability rules.
domain independent availability rule: . . .
There are two ways in which we can allgwrmitted and
req(Sub, Tar, Act, T) A not denied(Sub, Tar, Act, T) denied in the conditions of positive authorizations adichied
— do(Sub, Tar, Act,T) in the conditions of negative authorizations: (1) Giventerél
L; with such a predicate, similar », we make sure that the
If we care about denying actions, e.qg. for auditing purposggne argument;, in L;obeys the constrairif; < T; and (2)
we can also add the following domain independent rule: \ye can find a total order over the actions such that the action
req(Sub, Tar, Act, T) A denied(Sub, Tar, Act,T) argument in both_; and in thepermitted or thedenied after
— deny(Sub, Tar, Act,T) “—" is not a variable. Furthermore, the action I must
precede the action in thgermitted/denied. Similar order
We refer to this rule as thaegative availabilityrule and constraints can be imposed on subjects and targets. These ar
refer to the new availability rule as thagositive availability easy properties to check and the computational complexkity o
rule. We are not limited to usindenied to close permits. We policy evaluation remains linear w.r.t. to the policy setesi
can directly describe prohibitions usinfgnied rules:

B. Obligations
location(warzone, T) — denied(Sub, Tar,notify(A),T) g

)]] S There are many classes of obligations. In this paper we
We have informally introduced negative authorization@es. il limit our treatment to obligations acquired by a sulijec

In formal terms, negative authorizations are defined ae¥all {5 execute an action. The subject could be an entity external
Definition 10: A basicnegative authorization policy ruls 5 the system such as when a user is allowed to execute

a formula of the form: an action with the condition that she accepts the obligation
Li ALy ACy AChy — denied(S, R, A, T) to execute another action later on. Obligations can also be
imposed in parts of the system, such that the system itdel§ta
where all the following properties hold: the responsibility of executing the action. In the formesea
1) n>0andm > 0. the system cannot enforce the obligation, it can only monito
2) EachL; is either an atom or an atom preceded byhether the obligations have been fuffilled.
not extended with an extr@ime argument. Example 7:A node must provide a second identification
3) No predicate in thd.;s can bedenied but it could be within 5 minutes of establishing a connection to the wirgles
permitted. server; otherwise the server will drop the connection.
4) Each(; is a time constraint. This example covers two obligations, one by the node making
5) All variables appearing in the time constraints must algbe connection, the second by the server which we will
appear in a non-time constraint atom in the rule. consider part of the system, that needs to drop the conmectio

6) For the extra argumenf; of each; it must hold that if the node does not fulfill its obligations.

In addition to the previously identified domain independent 7) If the predicate in; is do the relation must b&; < T'.
predicates for describing authorizations, we will introduhe 8) If the predicate inL; is obl the relation between the

following predicates for obligations: time arguments must b&; < T; otherwise there is a
1) obl(Subject, Target, Action, Ty, Ty, Time). The sub- total order over the actions (resp. subjects/targets) such
ject is the entity acquiring the obligation to invoke the that both the actiom (resp. subjectS/targetT’) in the
action on the targetl; and T are the limits of the obl predicate in the right hand side of the implication
interval within which the obligation must be fulfilled. and the action (resp. subject/target) argumenkirare
2) fulfilled(Subject, Target, Action, Time) not variables and the action (resp. subject/target) in
3) violated Subject, Target, Action, Time) L; precedes the action in the right hand side of the

We can write the two obligations in the example as follows: implication in the order. _ _
9) S R, A, T are terms of type Subject, Target, Action and

node(U, T) A do(U, server, connect(U, server),T) Time respectively.
— obl(U, server, submit21 D(U, server), T, T + 5min, T) An obligation policyis a finite set of obligation rules together
violated U, server, submit2I D (U, server),T) with (111.2), (111.3) and (111.4).
— obl(server, server, disconnect(U, server), T, T +1,T) We extend our definition of supported traces to cover
obligation policies as follows.
The first rule assigns obligations to nodes. Here a nodeDefinition 12: Let II be a policy. A traceoc =
is any entity that can request a connection to the servéy, sg,00), (i1,51,01),. .. is calledsupported byl if for each
The node is identified by the domain description predicate> 0, for every ground atomic literall € s, or A € oy
node. This predicate can be generated by the system that can be formed with predicate symbols from the {s&t,
predefined authentication mechanism. The second rulerassigermitted, denied, obl, revoke, fulfilled, violated} there
an obligation to the server and the server needs to invoke éists¢ such thatp — A € ground(Il) ando | ¢.
action on itself to fulfill the obligation. We define two pofic The rest of the definitions remain the same and the evalu-

independent rules fdiulfilled and violated ation of policies because of the hierarchical structurehef t
obl(Subject, Target, Action, T1, T, T) A rules is still linear with respect to the size of the set ofigiek.
do(Subject, Target, Action, T) ATy < T < Ty (1n.2) Before moving to the examples we would like to men-

— fulfilled(Subject, Target, Action, T) tion that although we have limited the constraints to time,

obl(Subject, Target, Action, T1, T2, T) AT > T (13) extending the constraints other domains (&gc_level; <
— violated(Subject, T'arget, Action, T Sec_levels) is simple. We will work out the details in exten-
sions of our work.

Note that for an obligation to be violated it needs to exist
after the upper limit of the intervally. This allows us to drop
obligations before they are fulfilled if needed. We will add a In this section we present a number of policies that relate
completion rule for obligations stating that obligatioreygist t0 a scenario involving a coalition search and rescue nissio

IV. EXAMPLE POLICIES

unless they are revoked, fulfilled or violated: (sar) inspired by the Holistan vignettes [7]. The mission is
led by a US special operations teans (spe¢ and involves
obl(Subject, Target, Action, T1, To, T) AT < TN two partners, a UK medical teara_medig and a team from
not revoke(Subject, Target, Action, T)A the Holistan National Guardh(ig). The mission commander
not fulfilled(Subject, Target, Action, T)A (1.4) . . .
not violated Subject, Target, Action, T) (mg is the I(_aader of theis specteam _arld will be responsible
— obl(Subject, Target, Action, T1, To, T + 1) for generating orders and transmitting them to the other

partners. Some of these orders, eaj.;“Move to intercept

Definition 11: An obligation policy ruleis a formula of the enemy at grid location Gwill be classified asecretwhereas

form: others will beunclassified This classification also applies to
Li ALy ACy AChy — 0bl(S, R, A, Ty, Ty, T) intelligence repc_)rts. available to mission par.tners.
The communications system for the mission uses an adhoc
where all the following properties hold: network to transmit messages. The system is integrated with
1) T, <Ty a policy based security management framework that ensures
2) n>0andm > 0. that the security policies of the mission are satisfied.
3) Each L; is either an atom or an atom preceded by For this scenario, we have selected policies that satisfy a
not extended with an extrdime argument. range of security requirements, from simple access control
4) Each(; is a time constraint. to separation of duty. For each policy, we present a natural
5) All variables appearing in the time constraints must aldanguage and formal definition before discussing the formal
appear in a non-time constraint atom in the rule. language features being used:

6) For the extra argumenf; of each; it must hold that ~ Example 8: Mission personnel who are permitted to read
T; < T either implicitly because they are part of themission orders are allowed to read mission intelligencéimit
constraints or becaugey A- - -AC,,, implies the relation. 12 hours of the mission

This policy is an authorization rule that depends onot permitted to both authorize and command missions in the
another permission and domain specific predicateame sector of the city.

mission(M,T), orders(O,M,T), intel(I, M,T), and This is an example of &hinese Walpolicy where a subject
startTime(M, ST, T). We would express this rule in ouris prohibited from performing an action on a particular &irg

formalism as follows: if he has already performed some other conflicting action on
another target. The formal definition of this policy would be
YO, M : mission(M,T1) A orders(O, M, T1)A as follows:
intel(I, M, T») A permitted(Subject, O, read, T1)A
tartTime(M, T3, T1) ATy < Ta < T .
L(gTir_ %;r;ei 172h73“’s i? A< <A (V1) VT, M1,3S : mission(M1,T) A mission(Ma, T)A
rmitted(Subiect. I d.T sector(My, S, T)A
permitted(Subject, I, read, T) VMs> : sector(Ma, S, T) A role(colonel, Subj, T)A
. . . . notpermitted(Subj, Ma, authorize, T') —
Despite hawngoe?_ﬂmz_tted in both thg head and b_ody of the permitted(&f& M2’c2ommand7 T)) v5)
rule, the above policy is acceptable in our formalism beeaus VT, M1,3S : mission(M1,T) A mission(Mz, T)A '
. ; ; ifi ; sector(My, S, T)A
the_p_ermztted predicate in thg body specifies a target that is WMs : sector(Ma. 5, T) A role(colonel, Sub, T)A
disjoint from the target used in the head predicate. notpermitted(Subj, Ma, command, t) —
Example 9: If a UK medical team member is obliged to permitted(Subj, M2, authorize,t)
transmit secret orders to the hng team, he must inform the)) o
mission commander of this action within 10 minutes In this case, the need for universal quantifiers in the body of

This policy is an example of the need for obligation policied€ rule means that these rules are not covered by the sesianti
as part of a security policy definition because the commandithe language currently defined. Introducing such quansifi

needs to be kept informed of information being disclosed {hilé maintaining the computational complexity propesta
order to evaluate the risk to the mission. The formal deéiniti (e language is a challenge to be addressed in our future work

of this policy is as follows: V. PoLICY ANALYSIS

Using our formalism, policies are always consistent, as
it is not possible to construct a supported trace IinN
mod(IT) that satisfies botlpermitted(subd,tar,act,t) and
not permitted(sub, tar, act,t), or denied(sub,tar,act,t)

This | h le of licy that ires th and not denied(sub, tar,act,t), for a given subjectsub,
IS 1S ahother exampie of a policy that requires the sa gettar, actionact and timet. Similarly for obligation poli-

predicate symbol, in this cas@l, in both the head and bOdycies. However, other forms of analysis and conflict detectio

of the rule. Once again this can be safely expressed in Qfrerent from classical inconsistency, can be performed o

Ianguage bgcause at least one of the _S_upject, Target, A"Given setll of authorization and obligation rules, such as
Action sets in the twabl predicates are disjoint.

Example 10: The mission commander is not allowed
both authorize and command a mission.
This is an example of a policy that ensures that particul
functions are not performed by the same subject, i.e.,
policy enforces a separation of function constraint. Thental
definition of this policy is as follows:

VT,0, M : mission(M,T) A orders(O, M, T)A
obl(uk_team, hng, transmit(O), T1, To, T)A
classify(O,secret) NT1 <To < T A (T3 —T) < 10mins —
obl(uk_team, mc, transmit(sent(hng, O)),T,T3,T)

(IV.2)

coverageanalysis,modalityandapplication specificonflicts.
E’overagerefers to having polices that cover all cases of
interest, e.g. Alice has the appropriate rights at the gppate
e. Modality conflicts can be of different types. They can
BE between authorization rules, whHnaccepts, at least one,
supported trace that satisfies botrmitted(sub, tar, act,t)
and denied(sub, tar, act,t) at the same time point, for
VT, M : mission(M,T) A permitted(me, M, authorise, T) — the same subjecsub, target_tar. and aCtiOI'l.aCt;. or they
denied(me, M, command, T) can occur between authorization and obligation rules. A
YT, M : mission(M,T) A permitted(mc, M, command, T) — conflict between authorizations and obligations may occur
denied(me, M, authorise, T) when the policyIl accepts a supported trace that satisfies
obl(sub, tar,act,t1,ts,t), at some time point, t; <t < to,
Example 11: The mission commander is not allowed gnd at the same time satisfiésiicd(sub, tar, act, t). Applica-
command a mission that he has authorized. tion specificconflicts, are, mstt_ead, conflicts that arise becau_se
This is an example of a separation of duty policy where 'J€ management actions being performed are incompatible
subject is prevented from performing a particular actiohgf With €ach other, as for instance, it is the casecofflict of

has performed some other conflicting action previouslysThgu'[_y (knownlalso as the requwe]r(nenlt. to e?sure ser;a:]atlon of
can be formally defined in our language as follows: uties). Ana ysing a given sdl of po Icies for any 0 these
types of conflicts can be translated into checking whether
VT, M : mission(M, T)A

do(me, M. authorise. TY ATy > T — (V.4) I verifies_, series of_propertigs, each indicating thatfree

denied(me, M, command, Tt). of a particular conflict. For instance, a propem® can be

VT : not (permitted(s,t,a,T) A denied(s,t,a,T)), which

Example 12: If the mission commander is a colonel, he states that at every time point, a given subjeshould never
allowed to both authorize and command missions but helis both permitted and denied to perform an actioon a

(IV.3)

targett. The analysis task that we are concerned with, in thigas been refuted). On the other hand, if the abductive proof
paper, is therefore to discover whether a giverikef policies procedure computes suchZg II is said toimply a modality
satisfies a given series of conflict-free defining properitgs conflict It is then necessary to show that it is indeed possible
and if not why not. Thus, for each properfy; we need to to construct a trace € D that satisfiedI A A. Such trace
evaluate whether will then satisfypermitted(s,t, a,t2) Adenied(s,t,a,ts) and
rovide an example of modality conflict. To illustrate thipé
D nmod(Il) = P (V.1) gf analysis with apsimple exar%/ple, consider the two I}:’ﬁes

and generate appropriate diagnostic information if not. Weeq(Sub, T'ar, notify(A),T) —

make use of arabductiveapproach [8], callechbduction in permitted(Sub, Tar, noti fy(A), T + 1)
refutation mode[9], whereby the analysis task in (V.1) is location(warzone, T) — denied(Sub, Tar,notify(A),T)
translated into an equivalent problem of showing that it ifhe abductive procedure would compute the input
not possible to consistently exteddl with assertions that a {req(sub, tar,notify(a),)}. This, together with TT
particular setA of inputs may actually oceur in such a way, 4 D, 7w0£1|d give Z;ewr'm'tted(s;b, tar, noti fy(a),t) A
that D N mod(IL U A) |= ~F;. We solve this latter task but denied(sub, tar,notify(a),t), provided that D satisfies

attempting to compute suchA using a complete abductive .
proof procedure [10]. The completeness of this procedureiﬁscatwn(wamone’t)' Any system trace supported bl

. . . at satisfies bt ti t) would then be an

guaranteed by the hierarchical structure of our policysule req(s.u Lar, o ifyla),t)
the procedure finds such/athen the assertions ift acts as an example of modality conflict,
exafn le ofumO(IjaIit <L:jonflict and thereforeI counter-exanhple Similar technique can be applied for the other modality
h P -yTh ‘ les that rop onflicts involving obligations. In particular we can vgrihe

€ given proper_QPZ._ € counter-examples that our approac llowing property for a given subject targett and actiona:
generates describe inputs occurring in a sub-class ofstthes
must themselves satisfy the given propefty This is ensured D Nmod(IT) |= VT : not (obl(s,t,a,t1,t2, T)A
by consideringP; as an integrity constraint on the form of t1 < T <ty Adenied(s,t,a,T))

possible traces, which prunes the set of possible countghich shows that the obligation of subjecto execute action
examples. A detailed description of the particular absecti; cannot be fulfilled because the subject does not have the
proof procedure used here can be found in [10]. right to execute: at the appropriate times.

The properties that we are able to analyze are Abductive reasoning can also be used to compute traces that
properties of the formvT.P(T) where P is a formula lead toapplicationspecific conflicts. Taking Example 1V.4 we
with only one time variableT'. For instance, consider acan verify if the separation of function constraint spedifixy
coverageanalysis of the policy in Ill.1. Let's verify that this policy is violated by checking the following propertyrfa
Alice is able to delete a file. The property to checlgiven subjecs. In this example the target is amyission(M)

is VI : permitted(alice, device, delete(file),T>)). and the actions areuthorise and command:
The abductive proof procedure would compute the) mod(Il) = VT, M
input set A = {req(alice, bob, notify(file), To), not (permitted(s, M, authorise, T') A mission(M, T)A

not req(bod, file,retain(file),Ty)} for time points
To, Ty and T, such that7T, < 77 < Ty and .))))
Ty — T, > 10min, provided that it is not possible to Finally, using our formalism we can check if a given set of

provereq(bob, file, retain(file), T) for anyTp < T < Ts. policies satisfies a desired security property. For exaiple
check that only mission commanders have permission to read

Analyzing a setll of authorization policies fomodality mission orders we try to look for violations by trying to find

conflicts is defined as showing that the following property subjecty and a timet and A that to verify the following:
holds for any given subject, targett and actiona
DnNmod(ITAA) =

D nmod(Il) = .VTC:lTime T demied T not role(p, commander, t)A
not (permitted(s, t,a,T) A denied(s, t,a,T)) permitted(p, missionOrders, read, t)

This property is treated as a safety property and the proeedu In summary, the ability to check these types of property

red_uce; to just find two arbitrary tim_e points - a tiyebefore .addresses a range of analysis needs and the use of abductive
a violation of the above property arises and a subsequeat t'F@asoning for this purpose has the added advantage of pro-

752 wher_1 the Cc.mﬂ'CF oceurs. Th? procedure checks Whether\/laing the sequence of input events that lead to a property
is possible to identify a seh of input formulae of the form violation

(not) req(s,t, a,t;) such that

permitted(s, M, command, T))

V1. RELATED WORK

Amongst the many alternative approaches to policy specifi-
If such a computation, which in the case of hierarchicalguleation, there are a number of proposals for formal, logiseila
always terminates, fails then the authorization poli€ycan notations. In particular logic-based languages have mrove
be assumed to have no modality conflict (i.e. the confliettractive for the specification of security policies bugytttan

DNmod(ITAA) | permitted(s,t, a,tz) Adenied(s,t, a,tz)

be difficult to use and are not always directly translatabte i is based on a characterization of system behavior in terms of
efficient implementations. The work presented in this papekecution traces that define the inputs, states and outputs o
bears some similarities to our previous work on formalizinthe system at each logical point in time. We have also defined
policies using Event Calculus [3]. Both approaches adeocat formal language to specify authorization and obligation
modelling the temporal properties of the managed systemlicies using first-order logic formulae containing exfili
and they both support authorization and obligation pddicietime arguments and defined the semantics of this language in
However, because of its emphasis on developing tool supptaitms of the system execution traces. Subject to the reéstric

for policy analysis and refinement, our prior work did nogiven in Section Ill, policies expressed in our formalism &e&
focus on defining the computational complexity properties @valuated in linear time with respect to the size of the polic
the formalism at the outset. In contrast, this paper dewelopdditionally, by choosing first-order logic with explicitnhe

a formalism for policy-based security management with wedrguments (rather than temporal logic operators) we caly app
defined semantics and computational complexity propertiesabductive reasoning tools to perform a range of analysistas

The Lithium language of Halpern and Weissman [4] has The main focus of our future work is to extend our formal-
taken a more foundational approach by developing formalisism to deal with policy refinement. Our initial work on this
for policy that have well defined complexity results. Howevesuggests that the execution trace formalization can be tased
these results are based on static policy models where acagdsaracterize refinement in the following manner:
control decisions do not depend on temporal propertiesef th Definition 13: For a domain descriptio®, a policy Px is
system. Additionally, there is no support for obligatioripies a refinement of a policy? in D iff for every Sys € D that
which are often required to implement security mechanisms§ys |= Pg, thenSys |= P, i.e. mod(Pr) C mod(P).

Irwin et al. propose a formalism for obligation policies In addition to working on policy refinement, we plan to
together with analysis techniques [11]. In this paper, weehaextend our language to allow constraints on arbitrary e
adapted the syntax of these obligation policies to producdrathe antecedent of policy rules; allow mixed quantifiers
more general language that allows more complex policy rules the rules (as required in Example 12 above); support a
to be expressed. However, the hierarchical structure of tbleoice between policy rules (e.g., allow action ‘authdrize
rules in our language ensure that it is still computatignallcommand’ but not both); support aggregation of variables
tractable, and that it is capable of supporting analysek asc (e.g., allow “if more than 3 members of mission are present”)
the strong accountabilitichecking presented in [11]. and, constraints over domains different than time.

Other formal languages take advantage of the computational
efficiencies obtained by using subsets of first order logichs
as stratified logic. Barker proposed a language that suppofft] G- Rusello, C. Dong, and N. Dulay, “Authorisation and fiimt resolu-

e .. . ie tion for hierarchical domains,” ifProc. of Int. Workshop on Policies for
specification of access control policies using stratifiealise- Distributed Systems and Netwoykkine 2007.
form logic, with emphasis on RBAC policies [12]. However,[2] OASIS XACML TC. (2005) extensible access control markapguage
this work does not address conflict detection in policy spec-_ (XACML) v2.0. [Online]. Available: http://xacml-2.noteg.com
A . i [3] A. K. Bandara, “A formal approach to analysis and refinamef
ifications. The Authorization Specification Language (ASL) policies.” Ph.D. dissertation, Imperial College Londork,Wuly 2005.
of Jajodia et al. [5], [13] is another example of a language4] J. Y. Halpern and V. Weissman, “Using first-order logic teason

based on stratified clause-form IOgiC that also offers tm about policies,” inProc. of 16th IEEE Computer Security Foundations
for detecti dalit flict d licati . Workshop 2003, p. 187.
or detecting modality conflicts and some application sfieci [5] S. Jajodia, P. Samarati, V. Subrahmanian, and E. Bertitounified

conflicts in authorization policy specifications. Howewis framework for enforcing multiple access control policieis, Proc. of
language does not model temporal properties of the managed the ACM Int. SIGMOD Contf. on Management of Daltéay 1997.

t d it have subport for obligation policies 6] D. Toman and D. Niwinski, “First-order queries over teongl databases
system, no_r oes 1 " _pp g p ' inexpressible in temporal logic,” irProc. of the 5th Int. Conf. on
both of which are provided in our language. Further, the Extending Database Technology (EDBWI. 1057, 1996, pp. 307—324.
analysis capabilities of ASL do not allow static analysis ofl”] D- Roberts, G. Lock, and D. Verma, “Holistan a futurisgoalition

l ificati that traint . . ¢ scenario for international coalition operations,” Rmoc. of Knowledge
policy specifications that use constraints, assumlnganlsma Systems for Coalition Operationay 2007.

REFERENCES

conflicts will be detected at runtime. [8] B. Van Nuffelen, “Abductive constraint logic programmgj: implemen-
tation and applications,” Ph.D. dissertation, K.U.Leuv@algium, 2004.
VII. CONCLUSIONS& FUTURE WORK [9] A. Russo, R. Miller, and J. Kramer, “An abductive approator

. o analysing event-based requirements specifications?rat. of 18th Int.
In this paper we have presented our initial work on a formal conf. on Logic Programmingvol. 2401, Aug 2002, pp. 22—37.
characterization of policy analysis, together with a form&10] A. Kakas and P. Mancarella, “Generalised stable modelsemantics
e L .] for abduction,” inProc. of European Conf. in Al1990, pp. 385-391.
'a”QQaQe for spec!fylng both au.thorlzatlon and obhgap 1] K. lrwin, T. Yu, and W. H. Winsborough, “On the modeling@analysis
policies. Our technical approach is based on a foundational of obligations,” in Proc. of the 13th ACM Conf. on Computer and
treatment of the behavior of policies, and on using this as g goném‘;”'cigons _SteC“”IFQO%' pe. 154‘14?' " Broc. of Int. Conf
. barker, ecurity policy specification In logic, roc. or Int. Cont.
basis to reason about algorithmic solutions to policy asialy on Al June 2000, pp. 143-148.
This is an improvement on existing work in the field which13] s. Jajodia, P. Samarati, and V. Subrahmanian, “A lddeaguage for
either ignored the temporal properties of policy managed ex;c)jres_sing authorizations,” iAroc. of the IEEE Symposium on Security
systems or ignored the need for obligation policies to deecr " Privacy 1997, p. 31.

realistic policy-based security mechanisms. Our fornadilin

