
Toward a Formal Characterization of
Policy Specification & Analysis

Arosha Bandara∗, Seraphin Calo†, Jorge Lobo†, Emil Lupu‡, Alessandra Russo‡, Morris Sloman‡
∗The Open University, Milton Keynes, MK7 6AA, UK - Email: a.k.bandara@open.ac.uk

†IBM Research, IBM T J Watson Research Center, NY, USA - Email:{scalo, jlobo}@us.ibm.com
‡Imperial College London, London SW7 2AZ, UK - Email:{e.c.lupu, a.russo, m.sloman}@imperial.ac.uk

Abstract—Policy-based management of the security of a mil-
itary communications network can simplify the configuration
process, while increasing security and availability. An effective
policy-based approach requires analysis of policies for inconsis-
tencies, and for desired security properties. It also must provide
for the refinement of high-level security goals into concrete
policies. This paper defines a language based on first-order logic
formulae containing explicit time arguments which is expressive
enough for specifying a range of authorization and obligation
security policies, while supporting the formalisms and automated
tools needed for analysis and refinement. Both system behavior
and the semantics of the policies themselves are defined in
terms of execution traces, to enable reasoning about algorithmic
solutions to policy analysis. The paper also proposes some
analysis tools based on the use of logical abduction.

I. I NTRODUCTION

Secure, reliable and adaptable communications is needed
to support dynamic mission-based coalitions of partners from
different military and non-military organizations. If thewrong
information is communicated to the wrong person/device, it
could cost the lives of the personnel involved in the mission.
Likewise, if the right information is not communicated and
shared with the right people, it could also lead to loss of
lives. Policy-based security management should enable mil-
itary personnel to specify security requirements in terms of
simple, intuitive goals which are translated into the concrete
system settings in such a way that the system behaves in a
consistent and desirable way. The objective is to minimize
the technical expertise required by military personnel, and
to automate policy management as far as possible. This is
dependent on being able to specify and analyze policies to
ensure that they prescribe correct and desirable behavior.For
example, inconsistencies should not arise because the available
communication devices cannot support the specified policies.

We assume that military personnel specify goals using a
structured natural language aimed at non-technical people.
Goals are automatically translated into a formal, logic-based

Research was sponsored by the U.S. Army Research Laboratoryand the
U.K. Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document
are those of the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized toreproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

abstract language for refinement and analysis. Our past experi-
ence has indicated that logic languages, while good for reason-
ing, are not amenable to efficient implementation, particularly
on small hand-held devices. Thus abstract policies must be
translated into concrete implementable policies described in
languages such as Ponder[1] or XACML[2].

This paper focuses on the intermediate abstract policy
language that requires a powerful logic-based formalism with
available reasoning tools, based on which techniques for aiding
policy analysis and refinement can be developed. Our previous
work in this area used a formalization of policies based on the
Event Calculus [3], but there was no a priori consideration
of the complexity and computability properties. As a result,
it was necessary to reverse engineer various restrictions into
the language in order to ensure tractability of the analysis
and refinement procedures. The more foundational approach
of [4] and [5] uses formalisms for policy with well defined
complexity results, based on static policy models where access
control decisions do not depend on temporal properties of
the system. Additionally, their work does not support obliga-
tion policies, which are often required to implement security
mechanisms. These limitations restrict the type of policies that
can be expressed, and preclude the use of their approach for
practical policy-based security management applications.

The work presented in this paper addresses these short-
comings by defining a language expressive enough to deal
with a range of security policy requirements, and tractable
to facilitate automation of the analysis process. Our technical
approach is based on developing a foundational treatment of
the behavior of policies, and using this as a basis to reason
about algorithmic solutions to policy analysis. We will also
extend this to deal with refinement as future work. System
behavior is defined in terms of execution traces of inputs, states
and outputs of the system at each logical point in time. We use
the input, state and output symbols in these traces to define
first-order logic formulae containing explicit time arguments to
specify authorization and obligation policies. The semantics of
these formulae are defined in terms of the system execution
traces. Our formulae contain explicit time arguments, rather
than standard temporal logic, in order to keep our language in
the realm of logic programs. This allows us to use abductive
reasoning to analyze policy specifications, as well as being
more expressive than using temporal logic operators [6].



The paper is organized as follows: Section 2 defines basic
terms and concepts used in our formal policy language; Sec-
tion 3 gives the syntax and semantics of this language followed
by examples to demonstrate its capabilities and limitations
in section 4; Section 5 discusses the analysis capabilitiesof
our language together with some directions for future work;
Section 6 presents some related work on formalizing security
policies; and, finally section 7 presents our conclusions and
summarizes our plans for developing this approach further.

II. D EFINITIONS

A system is said to comply with a policy if it acts according
to the behavior specified by the policy. A simple characteri-
zation of the system is thus needed to determine whether it
complies with the policy.

We will assume that at any time a system can be in one of
a given set ofstates, with system behavior defined in terms of
how the system transitions through states over time. Systems
interact with the world by receivinginputswhich may result
in state changes and the generation ofoutputs. Inputs come
from external entities and cannot be controlled by the system.
Thus, we characterize the behavior of a system in terms of its
state transitions and outputs, in reaction to its inputs.

Formally, we have three setsI,S,O of Inputs, States
and Outputs, and define the set of tracesT with respect to
I,S,O as the set of finite or infinite sequences of triples
(i0, s0, o0), (i1, s1, o1), . . ., where ik ∈ I, sk ∈ S, ok ∈ O
for any k ∈ N . A systemSys is defined (characterized) by a
subset ofT , Sys ⊆ T , the set of all its possible behaviors.

Example 1:As an example, consider a secure communica-
tions system which accepts as inputs requests to transmit the
location information of specific military personnel. Outputs of
the system would be transmissions of the requested location
information or denials if the policy for the current state ofthe
system does not permit the user to perform the request.

We assume a typed first order logic languageL with typed
variables, constant and function symbols, and with a set of
typed predicate symbols partitioned into three setsI (input
predicate symbols), S (state predicate symbols) andO (output
predicate symbols). Function and predicate symbols have an
assignedarity which is a non-negative integer. Aterm is
recursively defined as a variable, a constant, orf(t1, . . . , tn)
if f is a function symbol of arityn and eachtk is a term of the
appropriate type.p(t1, . . . , tn) is an atomic formulaor atom
if p is a predicate symbol of arityn ≥ 0 and eachtk is a term
of the appropriate type. Formulae can be formed using the
standard logical connectors,¬, ∧, ∨, . . . and the quantifiers∀
and∃. An input formulaonly has input predicate symbols and
similarly for Stateandoutput formulae . Aground term does
not have variable occurrences and a (atomic) formula has no
variable occurrences.

For a typed first order languageL we define an inputi in
IL to be any subset of the atomic ground input formulas in
L; a states in SL to be any subset of the atomic ground state
formulas inL and an outputo in OL to be any subset of the

atomic ground input formulas inL. When this is clear from
the context we will drop any reference toL.

Example 2:Extending example 1, we define an input
predicate symbol:req; a single state predicate symbol:
dataProperty, and two output predicate symbols:do and
deny. We have three constant symbols:alice, bob, charlie

and david; and three function symbols:tx, securityLevel

and location. A few elements inIL, SL, OL:

i0 = {req(alice, tx(bob, location(charlie), securityLevel(high)))},
s0 = {dataProperty(location(charlie), securityLevel(high))},
o0 = {do(alice, tx(bob, location(charlie), securityLevel(high)))},
i1 = {req(bob, tx(david, location(charlie), securityLevel(low)))},
s1 = {dataProperty(location(charlie), securityLevel(low))}
o1 = {deny(bob, tx(david, location(charlie), securityLevel(low)))}

A possible trace of our sample system could be
(i0, s0, o0), (i1, s1, o1).
Since the purpose of a policy is to characterize the compliant
behaviors of a system we will formally define policies as
restrictions over the possible tracesT . Hence, a policyP
defines a subset of acceptable tracesmod(P ) that model the
policy: mod(P ) ⊆ T .

Example 3: In our example if we have a policy
where Bob is not allowed to send Alice’s location in-
formation to Charlie, then there cannot be a trace
with a triple (i, s, o) in which an atom of the form
do(bob, tx(charlie, location(alice), securityLevel(X)) is in
o, with X either equal tohigh or low.
We can now formally define policy compliance.

Definition 1: A systemSys complies with a policyP iff
Sys ⊆ mod(P ). We will denote this bySys |= P .
In practice, we start with a system whose behavior is modified
by policies which may change over time. Thedomain descrip-
tion is a core set of system constraints, that are invariants on
the system behavior regardless of changes due to policies. For
example, if the communications system supports a super user
who is allowed to transmit any data item in any situation,
policies cannot force changes to this core constraint. The
domain description also defines the set of operations that the
system supports and a policy cannot introduce new operations,
or dictate the input behavior of the system. In other words,
although the domain description may say something about
input behavior, policies cannot modify it. In essence a domain
description defines systems that are correct.

Definition 2: Given a set of tracesT , a domain description
D is a subset of the power set ofT : D ⊆ 2T . We say that a
systemSys behaves according to the domainD iff Sys ∈ D.

Example 4:An input/ouput automata (e.g., a Mealy
machine) can be used to describe the domain of a system.
Figure 1 shows a automaton representing the domain of the
communication system described previously. The transitions
in this state chart show that traces inD can contain only triples
{({req(. . . , tx(. . . ))}, {dataProperty(. . . )}, {do(. . . )}),
({req(. . . , tx(. . . )}), {dataProperty(. . . )}, {deny(. . . )})}
where each trace can be obtained by instantiating the variables
using the values from the finite sets - in this example, the set
of users, locations and security levels.



dataProperty(Data, securityLevel(SL))

req(Subj, tx(From, To, Data, securityLevel(SL))) / 

do(Subj, tx(From, To, Data, securityLevel(SL)))

From = {alice, bob, charlie, david}

To = {alice, bob, charlie, david} 

Subj = {alice, bob, charlie, david}

Data = {location(…)}

SL = {high, low}req(Subj, tx(From, To, Data, securityLevel(SL))) / 

deny(Subj, tx(From, To, Data, securityLevel(SL)))

Variable Domains:

Fig. 1. Finite state automaton representing the domain description of the
example communications system

Domain descriptions dictate valid policies, i.e., if thereis no
system from the domain description that complies with the
policy then the policy cannot be implemented.

Definition 3: Given a domain descriptionD, a policyP is
consistent inD if there is Sys ∈ D such thatSys |= P ;
otherwiseP is inconsistent.
In our communications system example it is easy to see that
if we want a system to comply with a policy in whichAlice
can sendcontactInfo(. . . ) data then there is no behavioral
trace of the system that can implement this policy since
contactInfo(. . . ) is not a type of data specified in the domain
description. We can also define policy conflicts in terms of
inconsistencies.

Definition 4: Given a domain descriptionD, and a collec-
tion of policiesP1, . . . , Pn such that eachPi is consistent with
D, the policies are in conflict if there is no systemSys ∈ D

such thatSys |= Pi for every1 ≤ i ≤ n.
As described above, policies constrain the possible traces

of the system in the same way as the domain descriptions.
Therefore, we can represent policies in a similar fashion in
terms of restrictions on the allowable traces inD.

Example 5:For the communications system example, con-
sider a policy that states that “Alice is allowed to transmit
location data that has a low security level to Bob if she uses a
high security level for the transmission, but Bob is not allowed
to transmit location data to anyone else”. This natural language
policy could be enforced using the following concrete policies
in a system implementing a language like Ponder2 [1]:

Policy 1:
permit Alice →

Transmit(Alice, Bob, location(X), secLevel(high))
when secLevel(location(X), low)

Policy 2:
prohibit Bob → Transmit(Bob, ∗, location(∗), ∗)

In this case, the first policy only allows Alice
to transmit high security location data (e.g.
do(Transmit(Alice, Bob, location(X) . . .))) in the output
of a trace only if the security level of the transmission method
is high. The second policy prohibits the output trace from
indicating any transmissions of location data from Bob.

In the next section we introduce a language to formally
specify security policies, i.e., a language to define sets of
acceptable traces. Policies will be described using two types
of statements:authorizationsandobligations.

III. L ANGUAGE SPECIFICATION

Before going into the details of the syntax and semantics
of the language it may be helpful to explain the notation
used. Throughout the paper, constants, functions, and predicate
symbols begin with a lower-case letter, and variables begin
with an upper-case letter. The symbolT will generally refer
to a variable of typeTime, the symbol~X will be used to denote
a tuple of variables of (possibly different) types, not including
Time, the symbol~x to denote a tuple of ground terms of types
different fromTime, and the symbolσ will denote a trace. The
symbols⊤ and⊥ are used to denote respectively the constant
Boolean valuesTrue andFalse. We assume the typeTime to
be given by the setN of natural numbers. We will, therefore,
use0, 1, 2, 3, . . . , k, . . ., for k ≥ 0 to denote constants of type
Time, standard functions+, −, ×, to construct terms of type
Time and relations=, 6=, ≤, <, ≥, > to define relations over
Time. Greek-letter meta-variables are used to refer in general
to terms and expressions in the language.

A. Authorizations

There is a general consensus that authorizations typically
identify four different entities: a subject to whom the au-
thorization is being granted, an action (possibly with some
parameters) that defines the right being granted (i.e. the subject
is authorized to execute the action), a target where the action
will be executed and an optional condition that must be verified
before granting the right to the subject.

Example 6:Alice can delete classified data files from her
device if she sends a notification to the supplier of the data
10 minutes in advance and the supplier does not respond to
the notification asking Alice to retain the file.

There are three operations or actions mentioned in the
policy: notify, delete andretain. We appeal to the reader’s
intuition for the attributes of the predicates and operations
that will be used through the examples. The subject of the
authorization isalice. The target is Alice’sdevice where the
file resides. To specify authorization policies we will makeuse
of the following domain independent predicates:

1) req(Subject, T arget, Action, T ime)
2) do(Subject, T arget, Action, T ime)
3) deny(Subject, T arget, Action, T ime)
4) permitted(Subject, T arget, Action, T ime)
5) denied(Subject, T arget, Action, T ime)

req is an input predicate symbol,do anddeny are output pred-
icate symbols, andpermitted anddenied are state predicate
symbols. Intuitively the time argument in all the predicates
can be interpreted as the point in a trace where the predicate
is being evaluated. The example makes use of another group
of subjects:Suppliers of data. In general subjects can also
be targets as in the case ofSuppliers which are targets of
notify. The following is a domain dependent predicate needed
for the specification:

1) filedesc(Supplier, Name, T ype, T ime)

The policy can be (partially) described by the following rule:



do(alice, S, notify(delete(F )), T0) ∧ filedesc(S, F, class, T0)∧
not req(S, F, retain(F ), T1) ∧ T0 ≤ T1 ≤ T2 ∧ T2 − T0 ≥ 10mins

→ permitted(alice, device, delete(F ), T2)
(III.1)

The not in the formula has a special (logic programming-
like) meaning: for a givensub, tar, act and t and traceσ, if
req(sub, tar, act) is not it where (it, st, ot) is the tth tuple
of σ then not req(sub, tar, act, t) will hold in σ. The trace
σ complies with the policy if for all possible values ofs,
o, f , t0, t1 and t2 of the variablesS, O, F , T0, T1 and
T2 respectively, such thatdo(alice, s, notify(o, delete(f)) ∈
ot0 , filedesc(s, f, calss) ∈ St0 , t0 ≤ t1 ≤ t2, t2 −
t0 ≥ 10mins and req(s, f, retain(f), t1) holds in σ then
permitted(alice, device, delete(f)) ∈ st2 . A system Sys

complies with this policy if every trace inSys complies with
the policy.1

For availability we need to make sure that if the request
to execute an action appears in the trace of a system and the
subject making the request is permitted to execute the action
the action is executed. We achieve that by adding the following
domain independentrule to our policies, which we call the
basic availability policy rule:

req(Sub, Tar, Act, T ) ∧ permitted(Sub, Tar, Act, T )
→ do(Sub, Tar, Act, T )

Before we define basic policies we need to introduce the
concept of time constraints. An expressionC of the form
τ1 op τ2 where τi is either a constant or variable of type
Time or an arithmetic expression built using+, −, Time
constants andTime variables, andop is one of the operators
=, 6=, <,≤, >,≥, is referred to as atime constraint.

Definition 5: A basicpositive authorization policy ruleis a
formula of the form:

L1 ∧ Ln ∧ C1 ∧ Cm → permitted(S, R, A, T )

where all the following properties hold:

1) n ≥ 0 andm ≥ 0.
2) Each Li is either an atom or an atom preceded by

not extended with an extraTime argument.
3) No predicate in theLis can bepermitted.
4) EachCi is a time constraint.
5) All variables appearing in the time constraints must also

appear in a non-time constraint atom in the rule.
6) For the extra argumentTi of eachLi it must hold that

Ti ≤ T either implicitly because they are part of the
constraints or becauseC1∧· · ·∧Cm implies the relation.

7) If the predicate inLi is do the relation must beTi < T .
8) S R, A, T are terms of type Subject, Target, Action and

Time respectively.

A basic policyΠ is a set of positive authorization policy rules
together with the basic availability policy rule.

1Depending on the granularity ofTime the expression10mins will be
replaced by the right constant.

The constraints in the time arguments are imposed to ensure
that the permission to execute an action in a particular state
of a trace does not depend on “future” properties of the
trace. Condition (3) makes policies hierarchical logic programs
which can be evaluated in linear time with respect to the size
of the set of policy rules. We will partially lift this condition
later in the paper.

Given a policy rule P , a ground instance ofP is a
policy rule in which all the variables inP are simultaneously
replaced by ground terms of the appropriate type fromL. Let
ground(P ) be the set of all ground instances ofP , and for
a policy Π, let ground(Π) be the union of allgound(P ) for
all P ∈ Π. To formally define the set of traces specified by a
policy we will first define when our time extended predicates
are modelled by a trace.

Definition 6: Let L be a sorted first-order language whose
sorts include the set of natural numbersN asTimesort. LetΣ
be the first-order relational signature ofL, given byΣ = I ∪
O∪S. A ground atomp(~x, k) is a time extendedground atom
in L if p(~x) is a ground atom inL andk is a constant from
Time. Let σ = (i0, s0, o0), (i1, s1, o1), . . . be a trace inT and
let φ be a time extended ground atom inL. The satisfiability
of φ at positionk ≥ 0 of the traceσ is defined as follows:

• σ, k |= p(~x, k) iff p(~x) ∈ ik, wherep is an input predicate
symbol

• σ, k |= p(~x, k) iff p(~x) ∈ sk, wherep is a state predicate
symbol

• σ, k |= p(~x,~t, k) iff p(~x,~t) ∈ sk, where p is a state
predicate symbol

• σ, k |= p(~x, k) iff p(~x) ∈ ok, where p is an output
predicate symbol

If φ = p1(~x1, k1) ∧ · · · ∧ pn(~xn, kn), thenσ |= φ iff σ, ki |=
pi(~xi, ki), for everyi, 1 ≤ i ≤ n.

Definition 7: Let C = i op j be a ground time constraint
whereop is one of the operators=, <,≤, >,≥, and letσ be
a trace inT . C is said to be satisfied inσ, denoted asσ |= C,
if and only if i and j are positions inσ such thati op j. If
eitheri or j are arithmetic expressions they are evaluated with
the usual meaning.

Formally, the set of traces specified by a basic policy is
characterized by a special class of traces calledsupported
traces, which are defined as follows.

Definition 8: Let Π be a policy. A trace σ =
(i0, s0, o0), (i1, s1, o1), . . . is calledsupported byΠ if for each
k ≥ 0, for every ground atomic literalA ∈ sk or A ∈ ok

that can be formed with predicate symbols from the set{do,
permitted} there existsφ such thatφ → A ∈ ground(Π)
andσ |= φ.

The traces inmod(Π) for a setΠ = P1, . . . , Pn of policy
rules will be supported tracesσ satisfying each policy rule
Pi. If we consider the policy rule (III.1) with the basic
availability policy rule, a trace containing a tuple(ik, sk, ok)
such asdo(alice, supplier, notify(delete(file))) ∈ ok is
only supported if

permitted(alice, supplier, notify(delete(file))) ∈ sk



since only the basic availability policy rule can support

do(alice, supplier, notify(delete(file)))

Definition 9: Let Π be a policy andσ be a supported trace
by Π. The traceσ satisfiesΠ, denotedσ |= Π, if and only if
for everyφ → A ∈ ground(Π) such thatσ |= φ, thenσ |= A.
Let mod(Π) = {σ|σ |= Π}.

Because of its direct correspondence to hierarchical logic
programs we can implement monitors that can evaluate poli-
cies in linear time with respect to the size of the policy.

Note that the policy in our example does not specify how
to treat a request for anotify. The definition of a supported
trace for the policy does not let any subjectdo a notify.
A possibility would be to permit all actions not explicitly
described by basic policy rules. Before introducing such a rule
we must close the permits fordelete, i.e. indicate whichdelete

operations are denied, using the following rule:

filedesc(Sub, Sup,F, class, T )∧
not permitted(Sub, system, delete(F ), T )

→ denied(Sub, system, delete(F ), T )

We are leaving opendelete actions that might be applied to
non-classified data. We can now close the permits for all the
actions by replacing the basic availability rule with the new
domain independent availability rule:

req(Sub, Tar, Act, T ) ∧ not denied(Sub, Tar, Act, T )
→ do(Sub, Tar, Act, T )

If we care about denying actions, e.g. for auditing purposes,
we can also add the following domain independent rule:

req(Sub, Tar, Act, T ) ∧ denied(Sub, Tar, Act, T )
→ deny(Sub, Tar, Act, T )

We refer to this rule as thenegative availabilityrule and
refer to the new availability rule as thepositive availability
rule. We are not limited to usingdenied to close permits. We
can directly describe prohibitions usingdenied rules:

location(warzone, T ) → denied(Sub, Tar, notify(A), T )

We have informally introduced negative authorization policies.
In formal terms, negative authorizations are defined as follows.

Definition 10: A basicnegative authorization policy ruleis
a formula of the form:

L1 ∧ Ln ∧ C1 ∧ Cm → denied(S, R, A, T )

where all the following properties hold:

1) n ≥ 0 andm ≥ 0.
2) Each Li is either an atom or an atom preceded by

not extended with an extraTime argument.
3) No predicate in theLis can bedenied but it could be

permitted.
4) EachCi is a time constraint.
5) All variables appearing in the time constraints must also

appear in a non-time constraint atom in the rule.
6) For the extra argumentTi of eachLi it must hold that

Ti ≤ T either implicitly because they are part of the
constraints or becauseC1∧· · ·∧Cm implies the relation.

7) If the predicate inLi is do the relation must beTi < T .
8) S R, A, T are terms of type Subject, Target, Action and

Time respectively.

A basic authorization policyΠ is extended to be a set of
positive and negative authorization policy rules togetherwith
the positive availability rule.
To cover the semantics of negative authorizations we only
need to add to the set{do, permitted} of supported traces
the predicate symboldenied, and if the negative availability
rule is also part of the policy the predicate symboldeny.

With the possibility of negative and positive authoriza-
tions we can reach states in supported traces in which both
permitted(sub, tar, act) and denied(sub, tar, act) apply for
a given subjectsub, target tar and actionact. The pos-
itive availability rule gives priority todenied (i.e. denied

overrides permitted). To give priority to permitted we
just need to reintroduce the basic availability rule and add
notpermitted(Sub, Tar, Act, T ) to the condition of the neg-
ative availability rule. Furthermore, we can have a more
granular control over these priorities. We could, for example,
have different default rules for different actions. We justneed
to specify the given action in the availability rules.

There are two ways in which we can allowpermitted and
denied in the conditions of positive authorizations anddenied

in the conditions of negative authorizations: (1) Given a literal
Li with such a predicate, similar todo, we make sure that the
time argumentTi in Liobeys the constraintTi < T ; and (2)
We can find a total order over the actions such that the action
argument in bothLi and in thepermitted or thedenied after
“→” is not a variable. Furthermore, the action inLi must
precede the action in thepermitted/denied. Similar order
constraints can be imposed on subjects and targets. These are
easy properties to check and the computational complexity of
policy evaluation remains linear w.r.t. to the policy set size.

B. Obligations

There are many classes of obligations. In this paper we
will limit our treatment to obligations acquired by a subject
to execute an action. The subject could be an entity external
to the system such as when a user is allowed to execute
an action with the condition that she accepts the obligation
to execute another action later on. Obligations can also be
imposed in parts of the system, such that the system itself takes
the responsibility of executing the action. In the former case
the system cannot enforce the obligation, it can only monitor
whether the obligations have been fulfilled.

Example 7:A node must provide a second identification
within 5 minutes of establishing a connection to the wireless
server; otherwise the server will drop the connection.
This example covers two obligations, one by the node making
the connection, the second by the server which we will
consider part of the system, that needs to drop the connection
if the node does not fulfill its obligations.



In addition to the previously identified domain independent
predicates for describing authorizations, we will introduce the
following predicates for obligations:

1) obl(Subject, T arget, Action, T1, T2, T ime). The sub-
ject is the entity acquiring the obligation to invoke the
action on the target.T1 and T2 are the limits of the
interval within which the obligation must be fulfilled.

2) fulfilled(Subject, T arget, Action, T ime)
3) violated(Subject, T arget, Action, T ime)

We can write the two obligations in the example as follows:

node(U, T ) ∧ do(U, server, connect(U, server), T )
→ obl(U, server, submit2ID(U, server), T, T + 5min, T )

violated(U, server, submit2ID(U, server), T )
→ obl(server, server, disconnect(U, server), T, T + 1, T )

The first rule assigns obligations to nodes. Here a node
is any entity that can request a connection to the server.
The node is identified by the domain description predicate
node. This predicate can be generated by the system by
predefined authentication mechanism. The second rule assigns
an obligation to the server and the server needs to invoke an
action on itself to fulfill the obligation. We define two policy
independent rules forfulfilled andviolated:

obl(Subject, Target, Action, T1, T2, T ) ∧
do(Subject, Target, Action, T ) ∧ T1 ≤ T ≤ T2

→ fulfilled(Subject, Target, Action, T )
(III.2)

obl(Subject, Target, Action, T1, T2, T ) ∧ T > T2

→ violated(Subject, Target, Action, T )
(III.3)

Note that for an obligation to be violated it needs to exist
after the upper limit of the intervalT2. This allows us to drop
obligations before they are fulfilled if needed. We will add a
completion rule for obligations stating that obligations persist
unless they are revoked, fulfilled or violated:

obl(Subject, Target, Action, T1, T2, T ) ∧ T ≤ T2∧
not revoke(Subject, Target, Action, T )∧
not fulfilled(Subject, Target, Action, T )∧
not violated(Subject, Target, Action, T )
→ obl(Subject, Target, Action, T1, T2, T + 1)

(III.4)

Definition 11: An obligation policy ruleis a formula of the
form:

L1 ∧ Ln ∧ C1 ∧ Cm → obl(S, R, A, Tl, Th, T )

where all the following properties hold:
1) Tl ≤ Th

2) n ≥ 0 andm ≥ 0.
3) Each Li is either an atom or an atom preceded by

not extended with an extraTime argument.
4) EachCi is a time constraint.
5) All variables appearing in the time constraints must also

appear in a non-time constraint atom in the rule.
6) For the extra argumentTi of eachLi it must hold that

Ti ≤ T either implicitly because they are part of the
constraints or becauseC1∧· · ·∧Cm implies the relation.

7) If the predicate inLi is do the relation must beTi < T .
8) If the predicate inLi is obl the relation between the

time arguments must beTi < T ; otherwise there is a
total order over the actions (resp. subjects/targets) such
that both the actionA (resp. subjectS/targetT ) in the
obl predicate in the right hand side of the implication
and the action (resp. subject/target) argument inLi are
not variables and the action (resp. subject/target) in
Li precedes the action in the right hand side of the
implication in the order.

9) S R, A, T are terms of type Subject, Target, Action and
Time respectively.

An obligation policyis a finite set of obligation rules together
with (III.2), (III.3) and (III.4).

We extend our definition of supported traces to cover
obligation policies as follows.

Definition 12: Let Π be a policy. A trace σ =
(i0, s0, o0), (i1, s1, o1), . . . is calledsupported byΠ if for each
k ≥ 0, for every ground atomic literalA ∈ sk or A ∈ ok

that can be formed with predicate symbols from the set{do,
permitted, denied, obl, revoke, fulfilled, violated} there
existsφ such thatφ → A ∈ ground(Π) andσ |= φ.

The rest of the definitions remain the same and the evalu-
ation of policies because of the hierarchical structure of the
rules is still linear with respect to the size of the set of policies.

Before moving to the examples we would like to men-
tion that although we have limited the constraints to time,
extending the constraints other domains (e.g.Sec level1 <

Sec level2) is simple. We will work out the details in exten-
sions of our work.

IV. EXAMPLE POLICIES

In this section we present a number of policies that relate
to a scenario involving a coalition search and rescue mission
(sar) inspired by the Holistan vignettes [7]. The mission is
led by a US special operations team (us spec) and involves
two partners, a UK medical team (uk medic) and a team from
the Holistan National Guard (hng). The mission commander
(mc) is the leader of theus specteam and will be responsible
for generating orders and transmitting them to the other
partners. Some of these orders, e.g.,o1:“Move to intercept
enemy at grid location G”will be classified assecretwhereas
others will beunclassified. This classification also applies to
intelligence reports available to mission partners.

The communications system for the mission uses an adhoc
network to transmit messages. The system is integrated with
a policy based security management framework that ensures
that the security policies of the mission are satisfied.

For this scenario, we have selected policies that satisfy a
range of security requirements, from simple access control
to separation of duty. For each policy, we present a natural
language and formal definition before discussing the formal
language features being used:

Example 8: Mission personnel who are permitted to read
mission orders are allowed to read mission intelligence within
12 hours of the mission



This policy is an authorization rule that depends on
another permission and domain specific predicates
mission(M, T ), orders(O, M, T ), intel(I, M, T ), and
startT ime(M, ST, T ). We would express this rule in our
formalism as follows:

∀O, M : mission(M, T1) ∧ orders(O, M, T1)∧
intel(I, M, T2) ∧ permitted(Subject, O, read, T1)∧
startT ime(M, T3, T1) ∧ T1 < T2 < T3∧
(T3 − T2) < 12hrs →
permitted(Subject, I, read, T2)

(IV.1)

Despite havingpermitted in both the head and body of the
rule, the above policy is acceptable in our formalism because
the permitted predicate in the body specifies a target that is
disjoint from the target used in the head predicate.

Example 9: If a UK medical team member is obliged to
transmit secret orders to the hng team, he must inform the
mission commander of this action within 10 minutes.
This policy is an example of the need for obligation policies
as part of a security policy definition because the commander
needs to be kept informed of information being disclosed in
order to evaluate the risk to the mission. The formal definition
of this policy is as follows:

∀T, O, M : mission(M, T ) ∧ orders(O, M, T )∧
obl(uk team, hng, transmit(O), T1, T2, T )∧
classify(O, secret) ∧ T1 < T2 < T ∧ (T3 − T ) < 10mins →
obl(uk team, mc, transmit(sent(hng, O)), T, T3, T )

(IV.2)

This is another example of a policy that requires the same
predicate symbol, in this caseobl, in both the head and body
of the rule. Once again this can be safely expressed in our
language because at least one of the Subject, Target, and
Action sets in the twoobl predicates are disjoint.

Example 10: The mission commander is not allowed to
both authorize and command a mission.
This is an example of a policy that ensures that particular
functions are not performed by the same subject, i.e., the
policy enforces a separation of function constraint. The formal
definition of this policy is as follows:

∀T, M : mission(M, T ) ∧ permitted(mc, M, authorise, T ) →
denied(mc, M, command, T )

∀T, M : mission(M, T ) ∧ permitted(mc, M, command, T ) →
denied(mc, M, authorise, T )

(IV.3)

Example 11: The mission commander is not allowed to
command a mission that he has authorized.
This is an example of a separation of duty policy where a
subject is prevented from performing a particular action ifhe
has performed some other conflicting action previously. This
can be formally defined in our language as follows:

∀T, M : mission(M, T )∧
do(mc, M, authorise, T ) ∧ T1 > T →
denied(mc, M, command, T1).

(IV.4)

Example 12: If the mission commander is a colonel, he is
allowed to both authorize and command missions but he is

not permitted to both authorize and command missions in the
same sector of the city.
This is an example of aChinese Wallpolicy where a subject
is prohibited from performing an action on a particular target
if he has already performed some other conflicting action on
another target. The formal definition of this policy would be
as follows:

∀T, M1, ∃S : mission(M1, T ) ∧ mission(M2, T )∧
sector(M1, S, T )∧

∀M2 : sector(M2, S, T ) ∧ role(colonel, Subj, T )∧
notpermitted(Subj, M2, authorize, T ) →
permitted(Subj, M2, command, T )

∀T, M1, ∃S : mission(M1, T ) ∧ mission(M2, T )∧
sector(M1, S, T )∧

∀M2 : sector(M2, S, T ) ∧ role(colonel, Subj, T )∧
notpermitted(Subj, M2, command, t) →
permitted(Subj, M2, authorize, t)

(IV.5)

In this case, the need for universal quantifiers in the body of
the rule means that these rules are not covered by the semantics
of the language currently defined. Introducing such quantifiers
while maintaining the computational complexity properties of
the language is a challenge to be addressed in our future work.

V. POLICY ANALYSIS

Using our formalism, policies are always consistent, as
it is not possible to construct a supported trace inD ∩
mod(Π) that satisfies bothpermitted(sub, tar, act, t) and
not permitted(sub, tar, act, t), or denied(sub, tar, act, t)
and not denied(sub, tar, act, t), for a given subjectsub,
targettar, actionact and timet. Similarly for obligation poli-
cies. However, other forms of analysis and conflict detection,
different from classical inconsistency, can be performed on
a given setΠ of authorization and obligation rules, such as
coverageanalysis,modalityandapplication specificconflicts.
Coverage refers to having polices that cover all cases of
interest, e.g. Alice has the appropriate rights at the appropriate
time. Modality conflicts can be of different types. They can
be between authorization rules, whenΠ accepts, at least one,
supported trace that satisfies bothpermitted(sub, tar, act, t)
and denied(sub, tar, act, t) at the same time pointt, for
the same subjectsub, target tar and actionact; or they
can occur between authorization and obligation rules. A
conflict between authorizations and obligations may occur
when the policyΠ accepts a supported trace that satisfies
obl(sub, tar, act, t1, t2, t), at some time pointt, t1 ≤ t ≤ t2,
and at the same time satisfiesdenied(sub, tar, act, t). Applica-
tion specificconflicts, are, instead, conflicts that arise because
the management actions being performed are incompatible
with each other, as for instance, it is the case ofconflict of
duty (known also as the requirement to ensure separation of
duties). Analysing a given setΠ of policies for any of these
types of conflicts can be translated into checking whether
Π verifies series of properties, each indicating thatΠ free
of a particular conflict. For instance, a propertyP can be
∀T : not (permitted(s, t, a, T ) ∧ denied(s, t, a, T )), which
states that at every time point, a given subjects should never
be both permitted and denied to perform an actiona on a



targett. The analysis task that we are concerned with, in this
paper, is therefore to discover whether a given setΠ of policies
satisfies a given series of conflict-free defining propertiesPi,
and if not why not. Thus, for each propertyPi we need to
evaluate whether

D ∩ mod(Π) |= Pi (V.1)

and generate appropriate diagnostic information if not. We
make use of anabductiveapproach [8], calledabduction in
refutation mode[9], whereby the analysis task in (V.1) is
translated into an equivalent problem of showing that it is
not possible to consistently extendΠ with assertions that a
particular set∆ of inputs may actually occur in such a way
that D ∩ mod(Π ∪ ∆) |= ¬Pi. We solve this latter task but
attempting to compute such a∆ using a complete abductive
proof procedure [10]. The completeness of this procedure is
guaranteed by the hierarchical structure of our policy rules. If
the procedure finds such a∆ then the assertions in∆ acts as an
example of modality conflict and therefore counter-exampleto
the given propertyPi. The counter-examples that our approach
generates describe inputs occurring in a sub-class of traces that
must themselves satisfy the given propertyPi. This is ensured
by consideringPi as an integrity constraint on the form of
possible traces, which prunes the set of possible counter-
examples. A detailed description of the particular abductive
proof procedure used here can be found in [10].

The properties that we are able to analyze are
properties of the form∀T.P (T ) where P is a formula
with only one time variableT . For instance, consider a
coverageanalysis of the policy in III.1. Let’s verify that
Alice is able to delete a file. The property to check
is ∀T : permitted(alice, device, delete(file), T2)).
The abductive proof procedure would compute the
input set ∆ = {req(alice, bob, notify(file), T0),
not req(bob, file, retain(file), T1)} for time points
T0, T1 and T2 such that T0 ≤ T1 ≤ T2 and
T2 − T0 ≥ 10min, provided that it is not possible to
provereq(bob, file, retain(file), T ) for any T0 ≤ T ≤ T2.

Analyzing a setΠ of authorization policies formodality
conflicts is defined as showing that the following property
holds for any given subjects, targett and actiona

D ∩ mod(Π) |= ∀T : T ime

not (permitted(s, t, a, T ) ∧ denied(s, t, a, T ))

This property is treated as a safety property and the procedure
reduces to just find two arbitrary time points - a timet1 before
a violation of the above property arises and a subsequent time
t2 when the conflict occurs. The procedure checks whether it
is possible to identify a set∆ of input formulae of the form
(not) req(s, t, a, t1) such that

D∩mod(Π∧∆) |= permitted(s, t, a, t2)∧denied(s, t, a, t2)

If such a computation, which in the case of hierarchical rules
always terminates, fails then the authorization policyΠ can
be assumed to have no modality conflict (i.e. the conflict

has been refuted). On the other hand, if the abductive proof
procedure computes such a∆, Π is said toimply a modality
conflict. It is then necessary to show that it is indeed possible
to construct a traceσ ∈ D that satisfiesΠ ∧ ∆. Such trace
will then satisfypermitted(s, t, a, t2)∧denied(s, t, a, t2) and
provide an example of modality conflict. To illustrate this type
of analysis with a simple example, consider the two rules

req(Sub, Tar, notify(A), T ) →
permitted(Sub, Tar, notify(A), T + 1)

location(warzone, T ) → denied(Sub, Tar, notify(A), T )

The abductive procedure would compute the input
{req(sub, tar, notify(a), t)}. This, together with Π
and D, would give permitted(sub, tar, notify(a), t) ∧
denied(sub, tar, notify(a), t), provided that D satisfies
location(warzone, t). Any system trace supported byΠ
that satisfiesreq(sub, tar, notify(a), t) would then be an
example of modality conflict.

Similar technique can be applied for the other modality
conflicts involving obligations. In particular we can verify the
following property for a given subjects, targett and actiona:

D ∩ mod(Π) |= ∀T : not (obl(s, t, a, t1, t2, T )∧
t1 ≤ T ≤ t2 ∧ denied(s, t, a, T ))

which shows that the obligation of subjects to execute action
a cannot be fulfilled because the subject does not have the
right to executea at the appropriate times.

Abductive reasoning can also be used to compute traces that
lead toapplicationspecific conflicts. Taking Example IV.4 we
can verify if the separation of function constraint specified by
this policy is violated by checking the following property for a
given subjects. In this example the target is anymission(M)
and the actions areauthorise andcommand:

D ∩ mod(Π) |= ∀T, M

not (permitted(s, M, authorise, T ) ∧ mission(M, T )∧
permitted(s, M, command, T ))

Finally, using our formalism we can check if a given set of
policies satisfies a desired security property. For example, to
check that only mission commanders have permission to read
mission orders we try to look for violations by trying to find
a subjectp and a timet and∆ that to verify the following:

D ∩ mod(Π ∧ ∆) |=
not role(p, commander, t)∧
permitted(p, missionOrders, read, t)

In summary, the ability to check these types of property
addresses a range of analysis needs and the use of abductive
reasoning for this purpose has the added advantage of pro-
viding the sequence of input events that lead to a property
violation.

VI. RELATED WORK

Amongst the many alternative approaches to policy specifi-
cation, there are a number of proposals for formal, logic-based
notations. In particular logic-based languages have proved
attractive for the specification of security policies but they can



be difficult to use and are not always directly translatable into
efficient implementations. The work presented in this paper
bears some similarities to our previous work on formalizing
policies using Event Calculus [3]. Both approaches advocate
modelling the temporal properties of the managed system
and they both support authorization and obligation policies.
However, because of its emphasis on developing tool support
for policy analysis and refinement, our prior work did not
focus on defining the computational complexity properties of
the formalism at the outset. In contrast, this paper develops
a formalism for policy-based security management with well
defined semantics and computational complexity properties.

The Lithium language of Halpern and Weissman [4] has
taken a more foundational approach by developing formalisms
for policy that have well defined complexity results. However,
these results are based on static policy models where access
control decisions do not depend on temporal properties of the
system. Additionally, there is no support for obligation policies
which are often required to implement security mechanisms.

Irwin et al. propose a formalism for obligation policies
together with analysis techniques [11]. In this paper, we have
adapted the syntax of these obligation policies to produce a
more general language that allows more complex policy rules
to be expressed. However, the hierarchical structure of the
rules in our language ensure that it is still computationally
tractable, and that it is capable of supporting analyses such as
the strong accountabilitychecking presented in [11].

Other formal languages take advantage of the computational
efficiencies obtained by using subsets of first order logic, such
as stratified logic. Barker proposed a language that supports
specification of access control policies using stratified clause-
form logic, with emphasis on RBAC policies [12]. However,
this work does not address conflict detection in policy spec-
ifications. The Authorization Specification Language (ASL)
of Jajodia et al. [5], [13] is another example of a language
based on stratified clause-form logic that also offers techniques
for detecting modality conflicts and some application specific
conflicts in authorization policy specifications. However,this
language does not model temporal properties of the managed
system, nor does it have support for obligation policies,
both of which are provided in our language. Further, the
analysis capabilities of ASL do not allow static analysis of
policy specifications that use constraints, assuming instead that
conflicts will be detected at runtime.

VII. C ONCLUSIONS& FUTURE WORK

In this paper we have presented our initial work on a formal
characterization of policy analysis, together with a formal
language for specifying both authorization and obligation
policies. Our technical approach is based on a foundational
treatment of the behavior of policies, and on using this as a
basis to reason about algorithmic solutions to policy analysis.
This is an improvement on existing work in the field which
either ignored the temporal properties of policy managed
systems or ignored the need for obligation policies to describe
realistic policy-based security mechanisms. Our formalization

is based on a characterization of system behavior in terms of
execution traces that define the inputs, states and outputs of
the system at each logical point in time. We have also defined
a formal language to specify authorization and obligation
policies using first-order logic formulae containing explicit
time arguments and defined the semantics of this language in
terms of the system execution traces. Subject to the restrictions
given in Section III, policies expressed in our formalism can be
evaluated in linear time with respect to the size of the policy.
Additionally, by choosing first-order logic with explicit time
arguments (rather than temporal logic operators) we can apply
abductive reasoning tools to perform a range of analysis tasks.

The main focus of our future work is to extend our formal-
ism to deal with policy refinement. Our initial work on this
suggests that the execution trace formalization can be usedto
characterize refinement in the following manner:

Definition 13: For a domain descriptionD, a policyPR is
a refinement of a policyP in D iff for every Sys ∈ D that
Sys |= PR, thenSys |= P , i.e. mod(PR) ⊆ mod(P ).

In addition to working on policy refinement, we plan to
extend our language to allow constraints on arbitrary variables
in the antecedent of policy rules; allow mixed quantifiers
in the rules (as required in Example 12 above); support a
choice between policy rules (e.g., allow action ‘authorize’ or
‘command’ but not both); support aggregation of variables
(e.g., allow “if more than 3 members of mission are present”);
and, constraints over domains different than time.

REFERENCES

[1] G. Rusello, C. Dong, and N. Dulay, “Authorisation and conflict resolu-
tion for hierarchical domains,” inProc. of Int. Workshop on Policies for
Distributed Systems and Networks, June 2007.

[2] OASIS XACML TC. (2005) extensible access control markuplanguage
(XACML) v2.0. [Online]. Available: http://xacml-2.notlong.com

[3] A. K. Bandara, “A formal approach to analysis and refinement of
policies,” Ph.D. dissertation, Imperial College London, UK, July 2005.

[4] J. Y. Halpern and V. Weissman, “Using first-order logic toreason
about policies,” inProc. of 16th IEEE Computer Security Foundations
Workshop, 2003, p. 187.

[5] S. Jajodia, P. Samarati, V. Subrahmanian, and E. Bertino, “A unified
framework for enforcing multiple access control policies,” in Proc. of
the ACM Int. SIGMOD Conf. on Management of Data, May 1997.

[6] D. Toman and D. Niwinski, “First-order queries over temporal databases
inexpressible in temporal logic,” inProc. of the 5th Int. Conf. on
Extending Database Technology (EDBT), vol. 1057, 1996, pp. 307–324.

[7] D. Roberts, G. Lock, and D. Verma, “Holistan a futuristiccoalition
scenario for international coalition operations,” inProc. of Knowledge
Systems for Coalition Operations, May 2007.

[8] B. Van Nuffelen, “Abductive constraint logic programming: implemen-
tation and applications,” Ph.D. dissertation, K.U.Leuven, Belgium, 2004.

[9] A. Russo, R. Miller, and J. Kramer, “An abductive approach for
analysing event-based requirements specifications,” inProc. of 18th Int.
Conf. on Logic Programming, vol. 2401, Aug 2002, pp. 22–37.

[10] A. Kakas and P. Mancarella, “Generalised stable models: A semantics
for abduction,” inProc. of European Conf. in AI, 1990, pp. 385–391.

[11] K. Irwin, T. Yu, and W. H. Winsborough, “On the modeling and analysis
of obligations,” in Proc. of the 13th ACM Conf. on Computer and
communications security, 2006, pp. 134–143.

[12] S. Barker, “Security policy specification in logic,” inProc. of Int. Conf.
on AI, June 2000, pp. 143–148.

[13] S. Jajodia, P. Samarati, and V. Subrahmanian, “A logical language for
expressing authorizations,” inProc. of the IEEE Symposium on Security
and Privacy, 1997, p. 31.


