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Abstract

We present an abstract framework for default reasoning, which includes Theorist, default
logic, logic programming, autoepistemic logic, non-monotonic modal logics, and certain
instances of circumscription as special cases. The framework can be understood as a gener-
alisation of Theorist. The generalisation allows any theory formulated in a monotonic logic
to be extended by a defeasible set of assumptions.

An assumption can be defeated (or “attacked”) if its “contrary” can be proved, possibly
with the aid of other conflicting assumptions. We show that, given such a framework, the
standard semantics of most logics for default reasoning can be understood as sanctioning a
set of assumptions, as an extension of a given theory, if and only if the set of assumptions
is conflict-free (in the sense that it does not attack itself) and it attacks every assumption
not in the set.

We propose a more liberal, argumentation-theoretic semantics, based upon the notion of
admissible extension in logic programming. We regard a set of assumptions, in general,
as admissible if and only if it is conflict-free and defends itself (by attacking) every set of
assumptions which attacks it. We identify conditions for the existence of extensions and for
the equivalence of different semantics.
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1 Introduction

Until recently, formal logic was concerned mainly with the formalisation of universal
“truths”, such as those of mathematics, which hold without exception and for all
time. The logics which have proved useful for this purpose are all monotonic, in the
sense that any logical consequence of a set of axioms remains a logical consequence
if new axioms are added. Because of the default character of human reasoning,
that certain beliefs hold by default if there is no reason to believe the contrary,
attempts to apply such monotonic logics to the formalisation of human reasoning
have met with limited success. For this reason a number of “non-monotonic” logics
[38, 49, 39, 40] have been developed.

In this paper, we show that many of these logics can be understood as spe-
cial cases of a single abstract framework, based upon an argumentation-theoretic
interpretation of the semantics of logic programming [16, 17] and its abstractions
[10, 11, 6, 27]. In this framework, a set of assumptions, formulated in an underlying
monotonic logic, is regarded as an acceptable extension of a given theory, unless and
until there is reason to believe some contrary set of assumptions. Non-monotonicity
arises because the addition of a new sentence to a theory may provide new evidence
to the contrary of a previously acceptable default conclusion, which now has to be
withdrawn.

We show that the standard semantics associated with most non-monotonic logics
imposes a further requirement for the acceptability of a set of assumptions, namely
that the set attacks every other assumption not in the set. (A set of assumptions
attacks an assumption if and only if together with the given theory it implies a sen-
tence contrary to the assumption in the underlying monotonic logic). The following
simple example illustrates informally the way in which various non-monotonic logics
can be viewed as instances of the same abstract framework.

Example 1.1 Consider the principle that
A person is innocent unless proved quilty.

Its informal English meaning is that if a person is accused of a crime, then the
burden of proof is on the prosecution to show that the accused is guilty, rather than
on the defence to show that he is not. The accused is assumed not guilty, by default,
unless the contrary can be shown.

The naive representation in classical logic

VX [-guilty(X) — innocent(X)]

fails to capture the default character of the principle. It imposes on the defence the
greater burden of explicitly establishing that the accused is not guilty. In general,
this will be harder than simply showing there is no proof that he is guilty. In
particular, in the commonly occurring case where there is insufficient evidence to
prove either that the accused is guilty or that he is not, the default principle gives



the accused the benefit of doubt and concludes that he is innocent. In contrast, the
representation in classical logic fails to imply any conclusion.
In classical logic, the naive representation logically implies the contrapositive

VX [—innocent(X) — guilty(X)]

and therefore treats innocence and guilt equally. The informal principle, however,
expresses that innocence, rather than guilt, holds by default. Default reasoning
is non-monotonic, because a conclusion (e.g. that a person is innocent) which is
justified in one state of knowledge may not be justified if new knowledge becomes
available.

Theorist [43] employs the “naive representation” of classical logic, but overcomes
its deficiencies by extending the theory which includes the given sentence by means
of a maximal consistent set of assumptions of the form

—gualty(t)

for all ground (i.e. variable-free) terms, ¢, of the language. The asymmetric character
of the default is captured by not considering extensions with assumptions of the form

—innocent(t).

Because of this selective use of assumptions, the use of the contrapositive in this
example does not give rise to unintended consequences.

Like Theorist, circumscription [38] also employs the “naive representation” of
classical logic and minimises the extension of the predicate guilty (because minimis-
ing positive instances is equivalent to maximising negative instances of a predicate).
Although Theorist views extensions as syntactic objects and circumscription views
them as model-theoretic, the two views are equivalent in many cases.

Theorist and circumscription differ in another respect. Theorist is credulous, in
that it sanctions holding a conclusion if it is a logical consequence of one maximal
consistent extension of the given theory, whereas circumscription is sceptical, in its
sanctioning a conclusion if it holds in all such extensions (more precisely, if it holds
in all minimal models). 5

Logic programming can be understood, similarly to Theorist, as extending theo-
ries by means of ground negative literals not p representing the assumption that not p
holds by default unless its contrary, p, can be shown. Thus the logic programming
representation

innocent(X) < not guilty(X)

can be understood as expressing literally that a person is innocent if the person can
not be proved guilty; or equivalently, in our framework, as expressing that a person
is innocent if the contrary of the assumption that the person is not guilty can not
be shown.

SHowever, Poole [44] has also proposed an extension of Theorist, in which credulous reasoning
is used for “explanation” and sceptical reasoning for “prediction”.



Logic programming considers all ground negative literals as possible assumptions,
but prevents the derivation of the contrapositive

q < notp

of
p < notq

by employing only modus ponens for the implication symbol, “«". 6 Together with
instantiation of universally quantified variables, these two inference rules constitute
the underlying monotonic logic upon which logic programming is based. As we shall
see later, many different credulous and sceptical semantics for logic programming
can be understood in such assumption-based terms.

Default logic [49] combines classical logic with domain-specific inference rules.
In this example, it might employ the representation

M—guilty(X)
innocent(X)

where Mp stands for “p is consistent”, i.e. the contrary, —p, can not be shown,
where “—” is classical negation. Thus the domain-specific inference rule can be
interpreted as expressing that a person can be shown to be innocent if the contrary
of the assumption that the person is not guilty can not be shown. In our framework,
this is very similar to the interpretation of the logic programming representation.

Like logic programming, default logic prevents the derivation of the contraposi-
tive of default rules. A domain-specific inference rule of the form

M—p
g
can be used to derive ¢. It does not sanction the “contrapositive inference rule”
M—q
o

In our framework, default logic can be understood as non-monotonically adding
assumptions of the form Mp to theories formulated in an underlying monotonic
logic, which consists of classical logic augmented with domain specific inference
rules. We will see later that that the standard semantics of default logic can be
understood as a credulous semantics in assumption-based terms.

Autoepistemic logic [40] and non-monotonic modal logics [39], on the other hand,
can both be understood as using an expression of the form —Lp to represent an
assumption which holds by default if the contrary, namely p, can not be shown. “L”
is a modal operator, meaning “is believed”, is “known” or “can be shown”. “=”, as
in default logic, is classical negation. Thus, in both autoepistemic and nonmonotonic
modal logic, the example can be represented in the form 7

5This is equivalent to treating the implication p < not ¢ as an inference rule 224,

" Although the form of autoepistemic logic introduced in [40] was propositional, in this paper we
follow subsequent first-order formulations.



VX [-Lguilty(X) — innocent(X)]

143 ?

where “—” is ordinary material implication.

Both logics allow the derivation of the contrapositive
-p— Lq

of an implication of the form
-Lqg — p.

In our example, the contrapositive means that if a person is not innocent then he
must be shown to be guilty, which is compatible with the default interpretation of
the original sentence.

Both these logics can be understood as non-monotonically adding assumptions of
the form —Lp to theories expressed in an underlying monotonic logic. In the case of
autoepistemic logic the underlying logic is classical logic, and additional assumptions
of the form Lp also need to be considered explicitly. In non-monotonic modal logics,
the underlying logic is modal logic, which, because it includes the necessitation rule

of inference »

Lp
obviates the need to consider explicit assumption of the form Lp. In both cases, the
standard semantics can be understood as special cases of a single, abstract, credulous
semantics, formulated in assumption-based terms, which includes the stable model
semantics [20] of logic programming and the standard semantics of default logic as
further special cases.

The “innocent-unless-guilty” example illustrates the common feature of all these
non-monotonic logics, namely that they can be understood as adding assumptions
to an underlying monotonic logic, provided the contrary can not be shown. In the
general case, however, the problem of showing that a sentence p can not be shown is
complicated by the fact that the attempt to show p can make use of other conflicting
assumptions. Thus, for example, it is possible to have two conflicting defaults:

a person is innocent if not proved guilty,
a person is guilty if not proved innocent

or even a single conflicting default

a person is innocent if not proved innocent.
It is the need to deal with such examples that accounts for much of the complexity
of non-monotonic logics.

In this paper we will investigate both credulous and sceptical ways of under-
standing what it means for a given conclusion to hold non-monotonically as a result



of making certain default assumptions. The credulous approach justifies holding a
conclusion if there is a suitably acceptable set of assumptions, extending the ini-
tial theory, from which the conclusion can be derived in the underlying monotonic
logic. The sceptical approach, on the other hand, justifies a conclusion if it can be
derived from all acceptable extensions of the given theory. The notion of acceptable
extension can be understood in several different ways.

A semantics for default reasoning is given by specifying the notion of acceptable
extension and identifying whether the approach is credulous or sceptical.

The simplest notion of acceptability, which in its credulous manifestation we call
the naive semantics, requires simply that the initial theory be extended with some
maximal set of assumptions which is conflict-free (in the sense that the contrary of
none of the assumptions in the set can be shown using the notion of consequence
in the underlying monotonic logic). This semantics generalises the semantics of
Theorist [43], in which the underlying logic is classical, first-order logic.

The second, credulous semantics generalises the stable model semantics of logic
programming and the standard semantics of default logic, autoepistemic logic and
non-monotonic modal logic. This semantics, which we call the stable semantics,
requires not only that an acceptable set of assumptions be conflict-free, but that,
together with the initial theory, it implies the contrary of all assumptions not con-
tained in the deductive closure of the set.

The stable semantics can be given an argumentation-theoretic interpretation,
which suggests other, improved semantics. We interpret a monotonic proof of the
contrary of an assumption « based upon an initial theory T extended with assump-
tions A as an argument against «. Abstracting away from the detail of the actual
argument and focussing instead on the assumptions A upon which the argument is
based, we say that A attacks ov. Under this interpretation, a set of assumptions is
stable if and only if it does not attack itself (i.e. is conflict-free) and attacks every
assumption it does not contain.

Viewed in such argumentation-theoretic terms, stable semantics is unnecessarily
opinionated, taking a stand on every issue (i.e. every possible assumption either
belongs to a stable set or is attacked by it), whether or not that issue is relevant
to a given conclusion under consideration. The third, credulous semantics, instead,
regards a set of assumptions as acceptable if and only if it is conflict-free and its de-
ductive closure defends itself against all attacks (by attacking all sets of assumptions
which attack it). This semantics, called the admissibility semantics, generalises the
admissibility semantics [10] of logic programming and arguably improves upon the
standard stability semantics of default logic, autoepistemic logic and non-monotonic
modal logics.

The fourth, credulous semantics, called the preferential semantics, simply regards
an extension as acceptable if it is maximal admissible, in the sense that no proper
subset of the extension is also admissible.

The fifth, credulous semantics, called the complete semantics, is intermediate
between the admissibility and preferential semantics. It regards an extension as
acceptable if it is admissible and it contains all assumptions it defends.

As mentioned above, each of these credulous semantics has a sceptical version.



We will see that, in certain cases, circumscription can be understood as the sceptical
version of the naive semantics, where, as in Theorist, the underlying monotonic logic
is first-order classical logic. We will also see that the well-founded semantics of logic
programming is the sceptical version of the complete semantics, where the underlying
monotonic logic is the logic of Horn clauses.

The rest of the paper has the following structure: Section 2 introduces the ab-
stract framework and the naive semantics, equivalent to the semantics of Theo-
rist [43], and shows how different logics for default reasoning can be expressed as
instances of the abstract framework. Section 3 investigates the stable semantics.
Section 4 investigates the admissibility and preferential semantics. Section 5 inves-
tigates the complete semantics. Section 6 investigates sceptical semantics. Section 7
presents results about the existence of (credulous and sceptical) semantics and about
certain conditions under which they are equivalent. Section 8 describes relationships
to other argumentation-theoretic formalisms. Section 9 gives conclusions and points
to some directions for future research.

2 Assumption-based frameworks and naive semantics

In this paper, a deductive system is a pair (£, R) where
e [ is a formal language consisting of countably many sentences, and

e R is a set of inference rules of the form
dly...,0p

(%

where o, a1, ...,a, € L and n > 0.

Notice that logical axioms, «, can be represented as inference rules with n = 0. Any
set of sentences T' C L is called a theory.

A deduction from a theory T is a sequence 1, ..., Om, where m > 0, such that,
foralli=1,...,m,

e B, €T, or

A1y...,0p

e there exists in R such that ay,...,a, € {B1,...,0i-1}-

7
T I o means that there is a deduction from 7" whose last element is a. Th(T) is the
set {a € L|TF a}.

Notice that, because all deductions have finite length, every deductive system
(L, R) is compact in the sense that whenever T' - «, then Ty - « for some finite
subset Ty of T. Notice, too, that every deductive system is monotonic in the sense
that T C T" implies Th(T) C Th(T").

Following Poole [43], we argue that the non-monotonic character of default rea-
soning arises because a set of assumptions that acceptably extends a given theory
in a monotonic logic might not be acceptable if new sentences are added to the
theory. Different logics for default reasoning can be understood as having different



underlying monotonic logics, different kinds of assumptions and different notions of
acceptability.

At a sufficiently abstract level, however, despite these differences, the different
credulous non-monotonic logics can all be viewed as sanctioning a set of assumptions
as an acceptable extension of a given theory if and only if, given the extension, there
is no reason to believe the contrary of any assumption in the set. The notion of the
contrary of an assumption is different in different logics. In the simplest case, we can
understand the contrary of an assumption « as its classical negation —«. However,
other notions of “contrariness” are needed in other cases.

Definition 2.1 Given a deductive system (£, R), an assumption-based framework
with respect to (£, R) is a tuple (T, Ab, —) where

e T, AbC L and Ab # 0,

e ~ is a mapping from Ab into £, where @ denotes the contrary of a.

The theory T expresses a given set of beliefs, and Ab is a set of assumptions that
can be used to extend 7.

In the sequel, when there is no danger of ambiguity, we often omit reference to
the underlying deductive system (£, R) and/or to the assumption-based framework
(T, Ab, 7).

In contrast with an earlier formalisation [6], we do not try to reduce the notion
of contrariness to the notion of inconsistency. Nor, if the underlying logic admits
the notion of inconsistency, do we assume that inconsistency implies every sentence
of the language.

In this section, we consider the generalisation of Theorist’s semantics, where
the requirement that an extension be maximal consistent is generalised to the re-
quirement that it be maximal conflict-free. We call this generalisation the naive
semantics.

Definition 2.2 Given an assumption-based framework (7', Ab, —) and A C Ab,
A is conflict-free if and only if for all a € Ab, TUAV o, @,
A is mazimal conflict-free if and only if A is conflict-free and there is no conflict-
free A’ D A.

Note that, given any set of assumptions A, we can form the deductive closure Th(TU
A) of the theory T'U A. The deductive closure is often called an extension in the
literature on non-monotonic logic. This use of the term “extension” differs from
our informal use of the term, either to refer to A itself or to T'U A. In the sequel,
whenever it is important to be precise, we will state explicitly which of these three
uses of the term is intended.

The naive semantics is guaranteed to exist for assumption-based frameworks that
admit at least one conflict-free extension, as implied by the following

Theorem 2.1 For every conflict-free set of assumptions A, there exists a maximal
conflict-free set of assumptions A’ such that A C A,



Proof : Let ag,a1,...,Qn, ... be an enumeration of Ab — A. Let
L4 A0 = Av

o Api1 =AU {an} if Ay U{ay} is conflict-free, and

Ap4+1 = A, otherwise.

Let A’ = U;A;. Obviously, A C A’. Moreover, it is easy to see that A’ is maximal
conflict-free. q.e.d.

2.1 Theorist

Given a deductive system (£, R) for classical first-order logic, an abductive frame-
work [43] is a pair (T, Ab), where T' C L is consistent and Ab C L. A scenario is
a consistent theory T U A where A C Ab. ® An extension Th(T U A) is the logical
closure of a maximal (with respect to set inclusion) scenario [43].

The assumption-based framework corresponding to (7', Ab) is (T, Ab, ), where
a = -, for each o € Ab.

Note that, since T is consistent, () is a conflict-free set of assumptions. Therefore,
by theorem 2.1, the naive semantics of (T, Ab, —) always exists.

It follows immediately that

Theorem 2.2 Given an abductive framework (7', Ab) and the corresponding
assumption-based framework (T', Ab, —),

e TUA is ascenario of (T, Ab) if and only if A is a conflict-free set of assumptions
in (T, Ab, 7).

e F isan extension of (T, Ab) if and only if E = Th(TUA) where A is a maximal
(with respect to set inclusion) conflict-free set of assumptions in (7', Ab, 7).

Example 2.1 A simplified, propositional representation in Theorist of the “innocent-
unless-guilty” example of the introduction is

T = {—guilty — innocent}
Ab = {—guilty}

which has the single extension Th(T U {—guilty}).

8Poole defines Ab to be a set of open first-order formulae and A to be a set of variable-free
instances of formulae in Ab. In our formulation, £ and therefore Ab is a set of sentences (without
free variables). Our formulation is equivalent to Poole’s and more convenient for our purposes.



2.2 Logic programming

We will assume, as is conventional, that the semantics of a logic program containing
variables is given by the set of all its ground instances over the Herbrand universe
corresponding to the language of the program. The Herbrand universe corresponding
to a given language consists of all ground terms constructible from the constant
symbols and function symbols of the language. We use HB to stand for the Herbrand
base, i.e. the set of all ground atoms formulated in terms of the Herbrand universe.
We use HBpot to stand for the set {nota|a € HB} and Lit to stand for HB U
HBnot-

A normal logic program is a set of clauses of the form

04<_/317--'75n

where oo € HB, (1,...,8, € Lit, and n > 0.
The assumption-based framework corresponding to such a normal logic program
T is (T, HByot, ) with respect to (£, R), where

o L=LitU{a«~ p1,...,.0n|a € HB and B1,...,0, € Lit and n > 0};

e R is the set of all inference rules of the form

aFﬁlv"wﬁn ﬁlv"'aﬂn

o
where o € HB and 31, ..., 3, € Lit andn > 0;

e not o = «, for each not o« € HB,ut.

The interpretation of negative literals as assumptions in logic programming was
introduced in [16, 17], and formed the basis for the admissibility semantics [10],
the stable theory and acceptability semantics [28], and the argumentation-theoretic
interpretation for these semantics presented in [25, 11].

Note that we could, equivalently, represent clauses

()4(_/317"'7571

as inference rules

In this representation, the theory is empty, and a logic program is represented by
domain-specific inference rules of the underlying deductive system. This alternative
representation highlights the similarity between logic programming and default logic
(see section 2.3).

Example 2.2 The logic program T
{innocent «— not quilty}

represents the simplified “innocent-unless-guilty” example. In the corresponding
assumption-based framework there are two maximal conflict-free sets of assumptions,

10



Ay = {not guilty} and Ay = {notinnocent}. However, only the first, intuitively
correct one is acceptable in all semantics for logic programming. Therefore, the
naive semantics is not appropriate to capture the semantics for logic programming.
In sections 3, 4, 5 and 6, we will define other abstract semantics that correspond to
the logic programming semantics.

Logic programming can be extended, as proposed by Gelfond and Lifschitz [21],
by allowing, in addition to negation as failure, a second, explicit form of negation,
written as ~. This negation can be used to define negative instances of predicates
explicitly, instead of inferring them implicitly using negation as failure. Abductive
logic programming [25, 26] is another extension of logic programming, where positive
atoms can be explicitly indicated as assumptions and integrity constraints can be
used to prevent unwanted assumptions.

Both extended and abductive logic programming can be formulated as instances
of the assumption-based framework, following [25, 26, 12, 6, 56, 1].

2.3 Default logic

Let (Lo, Ro) be a deductive system for classical first-order logic. Following [49], a
default theory is a pair (T, D) where
o T'C Ly,

e D is a set of default rules of the form ?

a7Mﬁ1a"'7M/8n
Y

where «, B1,...,Bn, 7 € Lo, and n > 0.

Here, for simplicity, we have assumed that all default rules in D contain no free
variables. (Similarly to the case of logic programming, default rules containing free
variables can be understood as representing the set of all their ground instances.)

Given a default theory (T, D), the corresponding deductive system, (£, R), and
assumption-based framework, (T, Ab, ), are defined by:

e R=RyUD
o Ab={MpB|p € Ly and Mf appears in one of the default rules in D};

o Mo = —a.

In Reiter’s original formulation, default rules are expressed in the slightly different form

a:MpBi,...,MB,
vy

11



Intuitively, an assumption of the form M« means that « is consistent, i.e. that -«
can not be shown.

We will assume that the inference rules of first-order logic in Rg are applied only
to formulas in £y. This assumption together with the fact that the default rules in
D derive only formulas in £y implies the following lemma.

Lemma 2.1 Let (T, Ab, ) be the assumption-based framework corresponding to
a default theory (7', D). Then for each assumption Ma € Ab and for each set of
assumptions A C Ab

TUAF M« if and only if Ma € A.

This lemma is important because, in general, frameworks which satisfy the property
VB e Ab, TUAF g if and only if § € A, (called “flatness” in definition 4.3)
are guaranteed to have sensible semantics, as we will see in corollary 4.1 and theo-

rem 6.1.

Example 2.3 There are several ways of expressing the “innocent-unless-guilty” ex-
ample in default logic. Assume that the vocabulary of the language Lg consists of
the propositional symbols innocent and guilty.

1. Similarly to example 2.1 of Theorist, the default theory is

T = {—guilty — innocent}

D_ {Mﬂgz.n'lty} '
—guilty

In the corresponding assumption-based framework there is only one maximal
conflict-free set of assumptions A containing M —guilty.

2. The default theory is

T=10
D {Mﬁguilty}.

innocent

The corresponding assumption-based framework has one maximal conflict-free
set of assumptions as in representation 1.

The default theory in the first part of this example is a normal default theory [49],
i.e. with all default rules of the form

Mo

a

Poole [43] shows that there is a one-to-one correspondence between normal default
theories (7', D) and abductive frameworks (7, Ab) in Theorist, where each normal
default % in D corresponds to an assumption « in Ab and vice versa. Moreover,
under this correspondence, the semantics [49] of normal default theories coincides

12



with the naive semantics of Theorist. These results also follow from more general
results we will present later, in section 3.3.

Marek, Nerode and Remmel [36, 37] generalise default logic by dropping the
condition that the underlining monotonic logic be classical first-order logic. The
resulting non-monotonic rule system is defined to be a pair (Lo, R) where L is a
nonempty set of sentences and R is a set of non-monotonic rules of the form '°

ala"'7anaMﬁ17"'7Mﬁm
Y

where ayq, ..., ap, B1, ey Bm, v € Lo. If m = 0 then the rule is an inference rule of
some “underlying” monotonic logic. Otherwise, the rule is similar to a default rule
of default logic.

A theory T' CLy with respect to a non-monotonic rule system (Lo, R) can be
viewed as an assumption-based framework (T, Ab, ) with respect to a deductive
system (£, R) where

° £:£0U{M04’Oé€£0},
L4 Tg£07
o Ab={Maoa|a € Ly}, and

o Moa=—a.

2.4 Autoepistemic logic

Let (£, R) be a deductive system where L is a modal language containing a modal
operator L, and R is some set of inference rules for classical logic for the language
L. The intended meaning of L« is that « is believed.

A theory T in autoepistemic logic [40] can be viewed as an assumption-based
framework (T, Ab, —), where

o Ab={La|acL}U{-Lalac L}
e -La =« and La = —~La for each a € L.

Example 2.4 The “innocent-unless-guilty” example can be expressed naturally in
autoepistemic logic by the following theory

{—Lguilty — innocent}

In the corresponding assumption-based framework there are two maximal conflict-
free extensions. One contains the assumption —Lguilty, the other contains the
assumption —Linnocent. Only extensions of the first kind are acceptable in the
standard semantics of autoepistemic logic, which we will investigate in section 3.4.

100\ arek, Nerode and Remmel’s original notation is

al,...,an:ﬂl,...,ﬁm
Y

13



2.5 Non-monotonic modal logics

Non-monotonic modal logics [39] can be formulated in terms of deductive systems of
the form (£, R) where L is a first-order modal language containing a modal operator,
L, and R is some set of inference rules for the language £. Different choices for R
correspond to different modal logics. However, all R contain all instances of the

necessitation rule: 11 o

La
Given a theory T' C L, the corresponding assumption-based framework is (T', Ab, —)
where

for all o € L.

o Ab={-La|a€L};
e —La = a for each o € L.
Example 2.5 Let T be the theory
{—Lguilty — innocent}.

This has the same two kinds of maximal conflict-free extensions as in example 2.4
in autoepistemic logic, but containing only negative assumptions. Similarly, only
the first kind of extension, containing the assumption —~Lguilty, is acceptable in the
standard semantics, which is an instance of the stable semantics defined in the next
section.

In this example, the naive semantics for autoepistemic and non-monotonic modal
logic coincide. More generally, for some choices of R, autoepistemic and non-
monotonic modal logics coincide (e.g. see [53]), where for others they differ.

3 Stable semantics

In this section we define the notion of stable semantics, which corresponds to most of
the credulous semantics which have been proposed for default reasoning, including
Theorist’s extensions [43], the stable model semantics of logic programming [20],
extensions in default logic [49], expansions in autoepistemic logic [40] and fixed
points in non-monotonic modal logics [39].

Informally, a set of assumptions is stable if it is conflict-free and it attacks (by
proving the contrary of) every assumption it does not contain. More formally

Definition 3.1 Given an assumption-based framework (7', Ab, —),

e a set of assumptions A C Ab attacks an assumption o € Ab if and only if
TUAL @,

" Here we consider the necessitation rule as formulated in [39]. However, note that in monotonic
modal logics necessitation is restricted to sentences a € £ that are first-order tautologies.

14



e a set of assumptions A C Ab attacks a set of assumptions A’ C Ab if and only
if A attacks some assumption o € A,

If A attacks « (respectively A’) we also say that A is an attack against o (respectively
A'). Notice that an immediate consequence of definition 3.1 is that

e given a set of assumptions A C Ab, if A is conflict-free then A does not attack
itself.

However, the converse implication does not hold in general, because A might attack
an assumption which is implied by T"U A but is not in A explicitly, as illustrated
by the following example.

Example 3.1 Consider the autoepistemic logic theory T'

{-Lp — —-Lq, q}

and the set of assumptions A = {=Lp}. A does not attack itself, since T U A I/ p.
However, A is not conflict-free, since T U A F+ —Lgq, q.

If a set of assumptions does not attack itself and explicitly contains all the assump-
tions which, together with the given theory, it implies, then it is conflict-free. More
formally:

Definition 3.2 Given an assumption-based framework (T, Ab, —) a set of assump-
tions A C Ab is closed if and only if A = {av € Ab|TUAF a}.

It follows immediately that

e a closed set of assumptions A C Ab is conflict-free if and only if A does not
attack itself.

Note that a maximal conflict-free set of assumptions is necessarily closed.

Assumption-based frameworks where all sets of assumptions are closed are sim-
pler than other frameworks. In section 4, such special frameworks are said to be flat
(see definition 4.3).

Definition 3.3 A set of assumptions A is stable if and only if
e A is closed
e A does not attack itself and
e A attacks each assumption a & A.

The stable semantics generalises the naive semantics, as shown by the following

Theorem 3.1 For any assumption-based framework (7', Ab, —), for any set of as-
sumptions A C Ab,
if A is stable then A is maximal conflict-free.
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Proof : Assume A is stable. Then A is conflict-free. Therefore, we need to show
only that, for each assumption o ¢ A, AU {a} is not conflict-free. But this follows
directly from the fact that for each assumption o ¢ A, A attacks a. q.e.d.

The converse of theorem 3.1 does not hold in general, as illustrated by the logic
programming formulation of the “innocent-unless-guilty” example in example 2.2.
Here, the only stable set of assumptions is Ay = {not guilty}. In fact, the (maximal)
conflict-free set of assumptions Ay = {notinnocent} does not attack not guilty.

The assumption-based frameworks for which the stable semantics and the naive
semantics coincide are called normal assumption-based frameworks.

Definition 3.4 An assumption-based framework (7', Ab, —) is normal if and only
if every maximal conflict-free set of assumptions is stable.

The following theorem gives a sufficient condition for assumption-based framework
to be normal.

Theorem 3.2 An assumption-based framework (T, Ab, ) is normal if for each
A C Ab and each assumption a ¢ A
if AU {a} is not conflict-free then A attacks a.

Proof : From theorem 3.1, if A is stable then A is maximal conflict-free.

Suppose A is maximal conflict-free. Then, it is closed and does not attack itself.
Since for each assumption o ¢ A, AU {a} is not conflict free. Hence A attacks .
It is obvious that A is stable. q.e.d.

The following theorem provides an alternative characterisation of stability.

Definition 3.5 Given an assumption-based framework (7', Ab, —) and a set of as-
sumptions A C Ab,
S(A) = {a| A does not attack a}.

Theorem 3.3 A closed set of assumptions A is stable if and only if A = S(A).

Proof Let A be a closed set of assumptions. Then
e A does not attack itself if and only if A C S(A);
e A attacks each assumption o ¢ A if and only if S(A) C A. q.e.d.

The notion of stable extension, i.e. of a theory Th(T U A) for some stable set of
assumptions A, corresponds, more closely than the notion of stable set of assump-
tions, to the standard semantics of most non-monotonic logics, as we will see later
in this section. Note that the set of assumptions contained in a stable extension is
automatically closed.

The following theorem provides four alternative characterisations of the notion
of stable extension. The theorem shows that the different characterisations differ
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primarily in the way they characterise theoremhood in the underlying monotonic
logic. The first two characterisations are the simplest, because they take the notion of
monotonic theoremhood to be already given. The second, in particular, corresponds
to the standard characterisation of stable models in logic programming, extensions
in autoepistemic logic and fixed points in non-monotonic modal logics. The third
characterises a sentence as a theorem if it is derivable by means of a finite number
of inference steps. The fourth characterises the set of all theorems as the smallest
set containing an initial theory (7°U Afg) and closed under the operation of adding
theorems. The fourth corresponds to the original definition of extension in default
logic given in [49], whereas the third corresponds to the equivalent characterisation
of default logic as proved in [49].

Theorem 3.4 Given an assumption-based framework (7T, Ab, —) with respect to
(L, R)and E C L, let Ap = {a € Ab|a ¢ E}. Then the following statements are
equivalent:

1. E is a stable extension of (T, Ab, 7).

2. E=Th(TUAR),

and Ag is closed.

3. E=U2, E;, where
o Fi =TUAE,
e foreachi >1FE; :Eiu{ﬂeﬁy% € Rand ay,...,a, € E;},

and Apg is closed.

4. E=T(E)
where for each set S C £, I'(S) is the smallest set such that
e TUAg CT'(S), where Ag ={a € Ab|a ¢ S},
o for each *b3%2 € R, if o, ..., o € I'(S) then § € T'(S),

and Ag is closed.

Proof :

1) & (2)

E is a stable extension
if and only if (by definition)

there exists A such that £ = Th(T U A) and A is stable
if and only if (by theorem 3.3)

E=Th(TUA) where A = {a € Ab| A does not attacka} and A is closed
if and only if (by definition of attack)

E=Th(TUA) where A = {a € Ab|T UA I/ @} and A is closed
if and only if (by definition of E)

E=Th(TUA) where A ={a € Ab|a ¢ E} and A is closed
if and only if (by definition of Af)

E =Th(TUAE) and Ag is closed.
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(2) & (3)

By definition of Th, E; is the set of theorems derivable from the theory T'U Ag by
means of a deduction of length 1.

(2) & (4)

['(S) is the smallest set containing TUAg and closed under theoremhood. Therefore
I'(S) = Th(T U Ag) and the condition £ =I'(E) is equivalent to £ = Th(T U Ag)
in (2). q.ed.

3.1 Theorist

Theorem 3.5 For any abductive framework (T, Ab), the corresponding assumption-
based framework (7', Ab, —) is normal.

Proof : Suppose there exist A C Ab and o € Ab, o ¢ A such that AU {«} is not
conflict-free. Then, because an inconsistency in classical logic implies any sentence,
TUAU{a} F —a. Then TUA F o« — —a, and therefore TUA F —a, i.e. A attacks
a. Therefore the normality of the considered assumption-based framework follows
immediately from theorem 3.2. q.e.d.

It follows directly from this theorem, from theorems 3.1 and 2.2 and from definition
3.4

Theorem 3.6 Given a Theorist abductive framework (7, Ab), E is an extension of
(T, Ab) in the sense of [43] if and only if E is a stable extension of the corresponding
assumption-based framework.

3.2 Logic programming

Given a normal logic program P, let (P, Ab,”) be the corresponding assumption-
based framework (as defined in section 2.2).

By theorem 3.4, equivalence between parts 1 and 2, F is a stable extension if
and only if £ = {q|P UAg F q} where Agp = {notp € Ab|p ¢ E}. Note that the
condition that Ag is closed is unnecessary, because every set of assumptions in such
an assumption-based framework is closed.

Theorem 3.7 below states that stable semantics for logic programming corre-
sponds to stable model semantics [20], defined in terms of Herbrand models.

A Herbrand interpretation I of a theory is any subset of the Herbrand base of
the language of the theory. It assigns the truth value true to any ground atom in [
and the truth value false to any ground atom not in I. The truth value of any other
sentence is defined in the usual way. A Herbrand model of a theory is a Herbrand
interpretation in which every sentence in the theory is true.

By definition [20], M is a stable model of P if and only if M is the least Herbrand
model of the program Pj; obtained by eliminating from P:

e all clauses with conditions of the form not p such that p € M,

e all negative literals from the remaining clauses.
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It is easy to see that the least Herbrand model of Pys coincides with the set {p €
HB| P U Ay = p} where Ay = {notp|p ¢ M}. Therefore, M is a stable model
of P if and only if M = {p € HB|P U Ap; F p}. As a consequence, the following
theorem holds:

Theorem 3.7 M is a stable model in the sense of [20] of a logic program P if
and only if there is a stable extension E of the corresponding assumption-based
framework such that M = EN HB.

It is similarly easy to show that there is a one-to-one correspondence between answer
sets [21] of extended logic programs and stable extensions.

Notice that the notion of stable model (and similarly of answer set) is purely
syntactic. Extensions E are turned into models simply by restricting attention to the
variable-free atoms or literals in E. This close correspondence between extensions
and models suggests that there is no strong reason to prefer a model theoretic
semantics over a purely syntactic one based on extensions. In fact, for our purposes,
it is more convenient to deal with sets of assumptions than with extensions or models.
This will become more apparent when we investigate the admissibility semantics in
the next section.

3.3 Default logic

Given a deductive system (Lo, Ro) for first-order logic and a default theory (7', D),
let (T, Ab, —) be the corresponding assumption-based framework with respect to
(L,RoU D).

Reiter [49] defines a set E C Ly to be an extension of (T, D) if and only if
E =Ty(E) where Iy is defined as follows: for each set S C Ly, I'g(S) is the smallest
set such that

o T CTy(9),

e I'y(9) is closed with respect to the first order deductive system (L, Rg), and

o for each 2MBLMBu ¢ D if o € y(S) and —F; & S for each 1 < i < n then
v € To(9)

From the definition of Ag = {M|-3 ¢ S} (given in theorem 3.4), it follows imme-
diately that

Lemma 3.1 Let S C Ly. Then I'y(S) is the smallest set such that
o T CTu(S)
e for each % € RoUD ifT'g(S)UAg F a; for each 1 < i < n then vy € T'y(5).

For any S’ C L, let T'(S") = T'o(S' N Lo) U Agr.
From the flatness of default theories (theorem 4.5), it follows directly that
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Lemma 3.2 T'(9’) is the smallest set such that
e TUAg CT(5)
e I'(9’) is closed with respect to the deductive system (£, R).
Now it follows directly from theorem 3.4, equivalence between parts 1 and 4, that

Theorem 3.8 E C L is an extension in the sense of [49] of a default theory (7, D)
if and only if there is a stable extension E’ of the corresponding assumption-based
framework such that £ = E' N L.

A similar result holds for non-monotonic rule systems [36, 37]. Namely F is an
extension of a theory 7" in a non-monotonic rule system (£, R) if and only if there
is a stable extension E’ of the corresponding assumption-based framework such that
E = E'NL. This result follows directly from theorem 3.4, equivalence between parts
1 and 3.

The assumption-based frameworks corresponding to normal default theories are
normal in the sense of definition 3.4:

Theorem 3.9 For any normal default theory (7', D), the corresponding assumption-
based framework (7', Ab, ) is normal.

Proof : The proof is similar to that of theorem 3.5. Suppose there exist A C Ab
and Ma € Ab, Ma ¢ A, such that AU{Ma} is not conflict-free. Then, there exists
Mp e AU{Ma} such that TUAU{Ma} F —5. But M occurs in (T, D) only in
a default rule % € D. Therefore, TUAU{Ma} I (3, and therefore TUA U{Ma}
is inconsistent and implies every sentence in L. In particular, TUAU{Ma} F —a.
But, as before, Ma occurs in (T, D) only in a default rule % € D. Therefore,
TUAU{a} F —a, and therefore T U A + —a, i.e. A attacks Ma. Hence following
theorem 3.2, (T, Ab, ) is normal. g.e.d.

3.4 Autoepistemic logic

Given a modal language (£, R) containing a modal operator L and an autoepistemic
theory T' C L, let (T, Ab, —) be the corresponding assumption-based framework.

By theorem 3.4, equivalence between parts 1 and 2, F is a stable extension if and
only if E = Th(T'U Ag) where Agp = {La € Ab|-La ¢ E} U{-La € Ab|a ¢ E}
and Ag is closed.

The following theorem shows the correspondence between stable extensions and
the original stable expansion semantics of autoepistemic logic given in [40]: E is
a stable expansion of T in the sense of [40] if and only if £ = Th(T U {La | o €
EYU{-La|a ¢ E}).

In the proof of the theorem we will refer to the fact that a consistent theory T'
can admit an inconsistent stable expansion. For example, ' = {—=Lp} has the stable
expansion E = {Lp,—Lp,...} = L.
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Theorem 3.10 A theory F is a stable extension of the assumption-based framework
corresponding to an autoepistemic theory 7' if and only if F is consistent and is a
stable expansion [40] of T'.

Proof :
< Assume that F is a stable expansion and E is consistent. We need to prove only
that

1. {La€ Ab|-La ¢ E} ={La|a € E}.

But =La ¢ E implies (since, by definition of stable expansion, a ¢ E implies
~La€ E)ackE.

Conversely o € E implies (by definition of stable expansion) La € E, that in
turn implies (because E is consistent) -La ¢ E.

2. A={La|a€ E}U{-La|a¢ E} is closed.
Assume that A is not closed. Then, either there exists La € E such that
La &€ A or there exists =La € E such that ~La € A. In the first case, if
La ¢ A, then a ¢ E, then -La € E and F is inconsistent. In the second case,
if Lo ¢ A, then a € E, then La € E and FE is inconsistent. Therefore A is
closed.

= Assume that F is a stable extension of the assumption-based framework corre-
sponding to 7. We need to prove only that

1. F is consistent. Otherwise E would not be a conflict-free extension and there-
fore would not be stable.

2. {La€ Ab|-~La ¢ E} ={La|a € E},ie. -La ¢ E if and only if « € E.

But ~La ¢ E, if and only if (since E = Th(T U Ag) and Ag is closed)
—La & Ap, if and only if (by definition of Ag) « € E. q.e.d.

3.5 Non-monotonic modal logics

Given a first-order modal language (£, R) containing a modal operator L and a non-
monotonic modal theory T' C L, let (T, Ab, —) be the corresponding assumption-
based framework.

By theorem 3.4, E is a stable extension if and only if £ = Th(T U Ag) where
Ap ={-La € Ab|a ¢ E} and Ag is closed.

The following theorem shows the correspondence between stable extensions and
the original fixed point semantics for non-monotonic modal logics given in [39]: E
is a fived point of T if and only if £ = Th(T'U{-La|a ¢ E}).

In the proof of the theorem we will use the property, following directly from the
definition of fixed point, that a fixed point E of a theory T is inconsistent only if
T is inconsistent. Therefore, differently from the case of autoepistemic logic, it is
sufficient to assume that the theory T is consistent to guarantee the correspondence
between stable extensions and fixed points.
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Theorem 3.11 A theory F is a stable extension of the assumption-based framework
corresponding to a non-monotonic modal theory T if and only if F is a fixed point
of T and T is consistent.

Proof :

= We need to prove only that T is consistent. But if T was inconsistent then £ = L
would not be a stable extension, since Ag = @) would not be closed.

< Assume that F is a fixed point of T' and that T is consistent. We need to prove
only that Ap = {-La € Ab|a ¢ E} is closed. Suppose that it is not. Then, there
exists "La € F such that -La ¢ Apg. But then, by definition of fixed point, if
- La ¢ Ag then o € E. By necessitation, La € E. Therefore, F is inconsistent.
This contradicts the hypothesis that 7' is consistent. q.e.d.

4 Admissibility semantics

Viewed from an argumentation-theoretic point of view, stable semantics seems un-
necessarily restrictive, because it insists that a set of assumptions should take a
stand on every issue. On the other hand, the naive semantics, which allows any
conflict-free extension, is too liberal, because it allows intuitively unacceptable sets
of assumptions. We need a semantics which is more tolerant than stable semantics
and less liberal than naive semantics. Such a semantics, called the admissibility
semantics, was introduced for logic programming by Dung [10]. It provides a se-
mantics in cases like those in examples 4.1 and 4.2 below, where a stable semantics
does not exist.

Example 4.1 Consider the logic program

{p — not p}.

This has no stable extensions. However, A = () is admissible in the intuitive sense
that A is conflict-free and it is not attacked by any other set of assumptions. More-
over, A is maximal admissible, because the only larger set {not p} attacks itself.

Example 4.2 Consider the autoepistemic and non-monotonic modal theory
{-Ls — —r, —Lt—r}.

This has no stable extension. In fact, if it had a stable extension £ = Th(T U A),
with A a stable set of assumptions, then either A would contain —Ls and —Lr or
not. In the first case, A would attack itself and therefore would not be stable. In
the second case, A would be unable to attack all assumptions not in A. However,
both A; = {—-Ls} and Ay = {—Lt} are admissible, because each is conflict-free and
can defend itself against any closed attack. In particular, any attack against Aj
or Ag must contain the inconsistent set {—Ls,~Lt}. Any closed attack, therefore,
contains both —=L—r and —Lr, one of which is attacked by A; or As.

Definition 4.1 A closed set of assumptions A C Ab is admissible if and only if
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e A does not attack itself, and

e for each closed set of assumptions A’ C Ab,
if A’ attacks A then A attacks A’.

It is easy to see that in any assumption-based framework whose underlining de-
ductive system contains a notion of inconsistency such that inconsistency implies
everything, admissible sets of assumptions are consistent.

Definition 4.2 A set of assumptions A C Ab is preferred if and only if A is maximal
(with respect to set inclusion) admissible.

As mentioned above, the notions of admissible and preferred sets of assumptions
generalise the semantics for logic programming given by Dung [10]. This is expressed
by the following theorem.

Theorem 4.1 For each logic program 7" and set of assumptions A in the assumption-
based framework (T, Ab, —) corresponding to T,

TUA is an admissible scenario of T' (TTUA is a preferred extension of T') in the sense
of [10] if and only if A is an admissible (preferred) set of assumptions in (T, Ab, 7).

This theorem follows directly from the characterisation of Dung’s admissible scenaria
and preferred extensions given in [25, 26].

Throughout this section, we focus our attention on admissible sets of assumptions
rather than on admissible and preferred extensions. However, the restriction that
admissible sets A be closed means that they are like extensions in the sense that,
whereas extensions contain all the sentences Th(T'UA) derivable from T'UA, closed
sets of assumptions contain all the assumptions Th(T' U A) N Ab derivable.

Instead of understanding semantics in terms of admissible extensions or sets of
assumptions, it is also possible to define semantics in terms of the ground literals in
E =Th(T UA). In the case of logic programming, by assigning true to a ground
atom p if p € E and false to a ground atom p if not p € E, we obtain a three-valued
model of T'. Tt follows directly from the result shown in [29], that there is a one-
one correspondence between partial stable models [50] and models corresponding to
preferred sets of assumptions.

It is also easy to show that there is a one-to-one correspondence between admis-
sible and preferred sets of assumptions and the semantics of extended logic programs
proposed by Dung and Ruamviboonsuk [14].

The following theorem shows that preferred sets of assumptions provide a strictly
more liberal semantics than stable sets of assumptions.

Theorem 4.2 Every stable set of assumptions is preferred but not every preferred
set is stable.

Proof : Let A be a stable set of assumptions. First we show that A is admissible.
Let A’ be an arbitrary (closed) attack against A. Since A does not attack itself, it is
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clear that A’ € A. Hence, A’ — A is not empty. Since A is stable, A attacks A’ — A.
Therefore A attacks A’. So A is admissible. Since A attacks every assumption not
belonging to it, it is clear that A is a maximal admissible set of assumptions. Hence
A is preferred.

Example 4.1 shows that not every preferred set of assumptions is stable.  g.e.d.

In general, maximal conflict-free sets of assumptions need not be preferred, as
shown by example 2.2, where the only preferred set of assumptions is {not guilty}.
Moreover, preferred sets of assumptions are not necessarily maximal conflict-free, as
shown by the following example.

Example 4.3 In the assumption-based framework corresponding to the logic pro-
gram
{p < notq, q« notr, r« notp}

there is only one preferred set of assumptions, namely ), which is not maximal
conflict-free. In fact, the maximal conflict-free sets of assumptions are {notp},
{not q} and {notr}, which are not admissible.

However, the naive, stable and preferred semantics coincide for normal assumption-
based frameworks, as stated in the following theorem:

Theorem 4.3 For any normal assumption-based framework (T, Ab, ), for any set
of assumptions A C Ab, the following statements are equivalent:

1. A is maximal conflict-free.
2. A is stable.

3. A is preferred.

Proof :

(1) = (2) By definition 3.4 of normal assumption-based framework

(2) = (3) By theorem 4.2.

(3) = (1) Suppose A is preferred, but not maximal conflict-free. Then, A is
conflict-free because it is preferred. Therefore, by theorem 2.1, there exists A’ D A
such that A’ is maximal conflict-free. Since (T, Ab, ) is normal, A’ is stable. By
theorem 4.2, A’ is preferred, thus contradicting the hypothesis that A is preferred.
q.e.d.

The following theorem and its corollary guarantee the existence of preferred sets
of assumptions.

Theorem 4.4 For every admissible set of assumptions A, there exists a preferred
set of assumptions which contains A.
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Proof : The set of all admissible sets of assumptions that are supersets of A is a
non-empty partial order with respect to subset inclusion. Let Ag, A1,..., Ay, ...,
where n is an ordinal number, be any increasing sequence of admissible sets of as-
sumptions such that Ag = A. It is easy to see that this sequence has an upper bound
A" = U;>0 A; which is also admissible: if A" attacked itself then some finite subset of
A, contained in some A;, would attack itself, thus contradicting the admissibility of
A;. Similarly, any attack against A’ is an attack against some A;. The admissibility
of A; implies that A; and therefore A’ counter attacks this attack. Therefore, by
Zorn’s lemma, since every increasing sequence of admissible sets that are supersets
of A has an upper bound, then there exists a maximal admissible set of assumptions
containing A. g.e.d.

It follows directly from this theorem that, if at least one admissible set of assump-
tions exists, then there also exists a preferred set. It is easy to see that if the empty
set of assumptions is closed, then it is also admissible. This property holds trivially
for flat frameworks, defined as follows:

Definition 4.3 An assumption-based framework is said to be flat if and only if
every set of assumptions A C Ab is closed.

Corollary 4.1 Every flat assumption-based framework possesses at least one pre-
ferred extension.

Flat assumption-based frameworks have a flat structure, in the sense that all assump-
tions are independent from one other. In general, in a non-flat assumption-based
framework, an assumption « can be implied by a set of assumptions A for one of
two reasons:

e A is inconsistent with the theory, and in the underlying monotonic logic in-
consistency implies any sentence, including a.

e « can be derived from A by means of the domain-specific theory, T

Implicit assumptions of the first kind can arise in Theorist, autoepistemic logic and
non-monotonic modal logics and, as we will see later, in section 6.2, in circumscrip-
tion. Implicit assumptions of the second kind can arise in Theorist, circumscription,
autoepistemic logic and non-monotonic modal logics, as illustrated in example 3.1.
However, it is easy to see that neither kind of implicit assumption can arise in logic
programming and in our formulation of default logic (see lemma 2.1 for default
logic). Therefore:

Theorem 4.5
e The assumption-based framework corresponding to any logic program is flat.

e The assumption-based framework corresponding to any default theory is flat.
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However, the assumption-based frameworks corresponding to autoepistemic theo-
ries are never flat, since the set of assumptions {La, 7La}, for any sentence a, is
inconsistent for any theory T'. The assumption-based frameworks corresponding to
Theorist or non-monotonic modal theories may be flat in some cases, but are not
flat in general. For example, the assumption-based framework corresponding to the
non-monotonic modal theory

{p}

is flat, while the assumption-based framework corresponding to

{—=Lp}

is not.

Although, arguably, it is an improvement over both the naive and the stable se-
mantics, admissibility semantics can itself be improved, as the following example
shows.

Example 4.4 Consider the logic program P
{r* < nots, r«mnott, s—r,r*, t—mrrr'}

which simulates, in part, the autoepistemic and non-monotonic modal theory of
example 4.2. The positive atom r* simulates the negative literal —r; and the last
two clauses partially simulate the property in classical logic that an inconsistency
implies anything. P also partly simulates the extended logic program

{~r«—mnots, r«—nott}.

Like the theory T of example 4.2, P has no stable extensions. However, unlike T', the
sets Ay = {nots} and Ay = {nott} are not admissible, because the closed attack
A'={not s,not t}, against both A; and Aj, can not be counterattacked by A; and
As. Intuitively, however, A1 and As are both “acceptable” because A’ attacks itself
and is therefore not an “acceptable” attack.

Two semantics, called “stable theory” and “acceptability” semantics, have been
proposed for logic programming by Kakas and Mancarella [28], to deal with cases
like the one in this example. These semantics can be generalised and defined more
abstractly for any assumption-based framework. These generalisations are straight-
forward, and we shall not discuss them further in this paper. A formal definition of
these generalisations can be found in [27].

5 Complete semantics

Once an agent commits itself to a set of assumptions A, it is not unreasonable to
expect that agent to accept any further assumption « which is “defended” by A,
and then to accept any assumptions “defended” by AU{a}, etc. Repeatedly adding
such assumptions to a set A eventually leads to a complete set of assumptions, which
not only contains A, but also contains all the assumptions A “defends”.
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Definition 5.1 A set of assumptions A defends an assumption « if and only if for
each closed set of assumptions A’, if A’ attacks o then A attacks A’ — A.

Definition 5.2 Given an assumption-based framework (7', Ab, —) and a set of as-
sumptions A C Ab,
Def(A) = {a|A defends a}.

The following theorem follows directly from the definitions:

Theorem 5.1 A set of assumptions A is admissible if and only if

e A is closed, and
e A C Def(A).

Whereas a closed set of assumptions is admissible if and only if it is contained in the
set of assumptions it defends, it is complete if and only if it is identical to the set of
assumptions it defends:

Definition 5.3 A set of assumptions A is complete if and only if

e A is closed, and
o A= Def(A).

It follows immediately from the definition that every complete set of assumptions is
admissible. On the other hand, not every admissible set is complete. For example, in
flat assumption-based frameworks () is always admissible, but need not be complete.
However

Theorem 5.2 Every stable set of assumptions is complete.

Proof : Assume A is stable. Since every stable set of assumptions is admissible,
it suffices to show that A contains every assumption « it defends. If instead A de-
fends o ¢ A, then A also attacks . So A attacks A—A, which is impossible. g.e.d.

Although every stable set is complete, not every preferred set need be complete,
as the following example shows.

Example 5.1 Consider the non-monotonic modal theory
{—\Lp—>q7 —|Lr—>—|q}_

The set of assumptions {—Lp} is admissible, since it is closed, does not attack itself
and attacks the only closed attack {—Lp, ~Lr,—Lgq,...} = Ab against it. Moreover,
the assumption —Lr is defended by {—Lp}. This can be seen by the fact that the
only closed attack against —Lr is again {—Lp, -Lr,—Lq,...} which is attacked by
{=Lp}. However, {—Lp, ~Lr} is not admissible, since it attacks itself. Furthermore,
from theorem 4.2, we know that at least one preferred set of assumptions containing
{—Lp} exists. Call this set A. Then it is clear that =L is also defended by A. It
is also clear that —Lr ¢ A, because {—Lp,-Lr} is not admissible. Hence A is not
complete.
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However, corollary 5.1 of the following theorem states that in the case of flat
assumption-based frameworks, every preferred set of assumptions is complete.

Theorem 5.3 Let (T, Ab, —) be a flat assumption-based framework, A C Ab be
admissible and S C Ab be a set of assumptions defended by A (i.e. S C Def(A)).
Then A U S is also admissible.

Proof : Let A’ = AUS. Since (T, Ab, ) is flat, A’ is closed. First we prove that
A’ attacks every attack against it. In fact, each attack against A’ is either an attack
against A, which is attacked by A (since A is admissible), or an attack against S,
again attacked by A (since A defends S). Finally we prove that A’ does not attack
itself. In fact, if A’ did attack itself, then A’ would attack either A or S. In the
first case, since A is admissible, A attacks A’ and therefore S. Since A defends S,
we have that A attacks the empty set of assumptions, which is impossible. In the
second case, since A defends S, A attacks A’ — A = S — A. Again, since A defends
S, we have that A attacks the empty set of assumptions, which is impossible. g.e.d.

It follows immediately that

Corollary 5.1 Every preferred set of assumptions of a flat assumption-based frame-
work is complete.

Complete sets of assumptions need not exist in general, as demonstrated by exam-
ple 5.1. However, it follows directly from the existence of at least a preferred set of
assumptions for flat assumption-based frameworks and the above corollary 5.1, that
complete sets of assumptions always exist for flat assumption-based frameworks.

Complete sets generalise the notion of complete scenaria for logic programs as
defined by Dung [10]:

Theorem 5.4 For each logic program P and set of assumptions A in the assumption-
based framework (P, Ab, ) corresponding to P,

P U A is a complete scenario of P in the sense of [10] if and only if A is complete
with respect to (P, Ab, ).

From the equivalence (proved by [8]) between the stationary semantics [48] and
complete scenaria semantics [29] of logic programs, it follows then that the notion
of complete set of assumptions is equivalent to the stationary semantics.

6 Sceptical semantics

Until now we have focussed our attention on various credulous semantics. We shall
now investigate sceptical semantics. In general, we can define a sceptical semantics
which accepts a conclusion if and only if the conclusion holds in every (credulously)
“acceptable” extension, where “acceptability” is understood in terms of maximal
conflict-free, stable, admissible, preferred or complete extensions. In this section
we will investigate two sceptical semantics. The first is the sceptical version of the
complete semantics, the second is the sceptical version of the naive semantics.
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6.1 Well-founded semantics

The well-founded semantics of logic programming [60] is a sceptical semantics which
accepts a conclusion if and only if it holds in all complete extensions. This leads to
the following generalisation in our framework.

Definition 6.1 A set of assumptions A is well-founded if and only if A is the
intersection of all complete sets of assumptions.

Note that, because Def is monotonic (see definition 5.2), it possesses a unique least
fixed point, which coincides with (J{Def*()|i is an ordinal number}. If this fixed
point is closed then it is (minimally) complete and therefore well-founded. This is
guaranteed to be the case for flat assumption-based frameworks (see definition 4.3):

Theorem 6.1 For every flat assumption-based framework, the well-founded set of
assumptions is minimal (with respect to set inclusion) complete and coincides with
the least fixed point of the operator Def.

Proof : Since the framework is flat, () is admissible. jFrom theorem 5.3, it follows
immediately that for each ordinal i, the set U{Def(#)|i < n and n is an ordinal
number} is admissible. Therefore, the least fixed point of Def, |J{Def*(0)|i is an
ordinal number}, is admissible, and therefore does not attack itself (and is closed).
Hence, it is complete and therefore well-founded. q.e.d.

Therefore, for flat assumption-based frameworks, a well-founded, sceptical agent
is willing to make default assumptions A but it is not willing to commit itself to
A sufficiently to assume A in the course of defending A against attack. Rather, it
restricts itself either to defending A without making any assumptions at all or to
defending A with the aid of assumptions which can be justified without assuming
A to start with.

;From theorem 6.1 it follows that the well-founded set of assumptions is complete
for every logic program and default theory. Moreover, in the case of logic program-
ming, this set corresponds to the well-founded semantics of Van Gelder, Ross and
Schlipf [60]:

Theorem 6.2 Let P be a normal logic program and (P, Ab,”) the correspond-
ing assumption-based framework. Then A C Ab is well-founded with respect to
(T, Ab, —) if and only if {p| PUA F p} U{—p|notp € A} is the well-founded model
of P.

This theorem follows directly from the results shown in [10].

Note that theorem 6.1 gives a bottom-up method for computing the well-founded
semantics of a flat assumption-based framework by computing U{Def%(0)|i is an
ordinal number}.

The well-founded semantics is more sceptical than the semantics obtained by tak-
ing the intersection of all preferred or stable extensions, as implied by the following
theorems 6.3 and 6.4 and as illustrated by example 6.1:
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Theorem 6.3 For every flat assumption-based framework, the well-founded set of
assumptions is contained in every preferred set of assumptions.

Proof : Note that the well-founded set of assumptions is complete for any flat
assumption-based framework and is contained in every complete set by definition.
Moreover, every preferred set of assumptions of a flat assumption-based framework
is complete, by theorem 5.1. q.e.d.

It follows directly from this theorem and from theorem 4.2 that

Theorem 6.4 For every flat assumption-based framework, the well-founded set of
assumptions is contained in every stable set of assumptions.

Example 6.1 Let T be the logic program:
{p—notq, q<—notp, r—p, rq}

There are two stable sets of assumptions, {notp} and {not ¢}, which coincide with
the preferred sets of assumptions. The conclusion r is justified by both of them.
The well-founded set of assumptions, however, is (), and does not justify .

However, the well-founded set of assumption is not always contained in every ad-
missible set of assumptions. In particular, the empty set of assumptions is always
admissible for flat assumption-based frameworks, but need not to be well-founded.
For this reason, the semantics obtained by taking the intersection of all admissible
extensions is more sceptical than the well-founded semantics.

6.2 Circumscription

Whereas circumscription [38] is usually defined model-theoretically, we interpret
circumscription syntactically, in terms of sets of assumptions, when every model is
a Herbrand model. This is the case, for example, when the theory T contains no
function symbols and satisfies unique names axioms and domain closure axioms.

When every model is a Herbrand model, circumscription is the sceptical version
of Theorist. Whereas in Theorist the set of assumptions Ab can be any subset of
L, in our treatment of circumscription the set of assumptions Ab consists of ground
literals (atoms and their negation) for predicates which are fixed and ground negative
literals for predicates which are minimised.

More formally, let T be a theory in a first-order language £. Let P be a set of
predicate symbols of £ whose interpretation is to be minimised, Z a set of predicate
symbols of £ whose interpretation is to be varied and Q the set of remaining predi-
cate symbols of £, whose interpretation is to be fixed. Ab = HBY U HB2 U HBS
where

e HBT is the set of all sentences of the form

ﬁp(tl, e ,tn)

with p € P,
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o HB2 is the set of all sentences of the form

—q(t1, ... tn)
with ¢ € Q,

o HBC is the set of all sentences of the form

q(tr, ... tn)

with ¢ € Q,

and t1,...,t, are ground terms constructible from the vocabulary of L.

We will show (whenever every model is a Herbrand model) that a sentence a
follows from the circumscription of T if and only if o holds in all maximal conflict-free
extensions of (T, Ab, —), where 3 = —=f3 (so that conflict-freedom and consistency
coincide).

In the standard formulation [32], a sentence follows from the circumscription
of T, CIRCI|T;P; Z], minimising the interpretation of predicate symbols in P and
allowing the interpretation of predicates symbols in Z to vary if and only if the
sentence holds in all (P, Z)-minimal models of 7', defined as follows: Let M and
N be models of T'. Then, N <p z M if and only if M and N differ only in the
interpretation of P and Z, and the interpretation of P in N is a subset of its
interpretation in M. A model M of T is (P, Z)-minimal if and only if, for every
model N of T such that V §p7g M, M g'p’;_{ N.

Theorem 6.5 If every model of T is a Herbrand model of T', then

1. every (P, Z)-minimal model M of T is a model of a maximal conflict-free
extension of (T, Ab, —);

2. every model of a maximal conflict-free extension of (T', Ab, —) is a (P, Z)-
minimal model of T'.

Proof :

1. Let M be a (P, Z)-minimal Herbrand model of 7. Let A be the set of as-
sumptions MF U M2 UM<, where, for S =P or § = Q, M5 = {—a € HBS
la¢ M} and M = {a € HB® |a € M}. From the (P, Z)-minimality of M,
it is clear that M7* is maximal and therefore TU MP U M2 U M2+ MP.

Therefore, T'U A is maximal conflict-free. Moreover, by construction of A, M
is obviously a model of T"U A.

2. Let M be a model of a maximal conflict-free extension T"U A. From the
maximality of T"U A, for every atom ¢ in a predicate in Q, either ¢ € A or
-q € A. Further, again from the maximality of T'U A, for every atom p in
a predicate in P, if -p ¢ A then T"U A F p. Therefore, all models of TU A
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coincide on the extension of P and Q. Assume now that M is not (P, Z)-
minimal. Then, there must be a model N such that N <p z M. Therefore,
N and M coincide on the extension of @ and every P-atom that is false in M
is also false in N. Hence, N is also a model of T'U A that does not coincide
with M on the extension of P. This is a contradiction. q.e.d.

It follows directly from this theorem and from the definition of circumscription, that

Corollary 6.1 If every model of T is a Herbrand model of T', then, for any sentence
a € L, a holds in CIRC(T;P; Z) if and only if « holds in all maximal conflict-free
extensions of (T', Ab, 7).

If v in corollary 6.1 is restricted to ground clauses, then the corollary still holds under
more general conditions, for example when every model of T contains a submodel
which is a Herbrand model. With this restriction on the sentences «, corollary 6.1
also follows from theorem 2.8 (or the equivalent proposition 2.10) and theorem 2.5
of Inoue and Helft [23], and theorem 2.6 of Poole [44]. A version of corollary 6.1,
where T satisfies uniqueness of names axioms (and equality axioms), domain closure
axioms, £ contains no function symbols and there are no fixed predicates has been
proved by Ginsberg [22], corollary 2.2. A more general version of corollary 6.1 above
has been proved by Poole [45], theorem 4.5.1. The if-half of corollary 6.1 is related
to observation 3.4.11 in [35].

7 Existence, coincidence and uniqueness of semantics

In this section, we investigate two classes of flat assumption-based frameworks.
We show that for the first class, stratified assumption-based frameworks, the well-
founded semantics, which exists by theorem 6.1, is also stable (and therefore pre-
ferred). Thus, for stratified frameworks, well-founded, preferred and stable semantics
always exist, coincide, and are unique. We show that for the second class, order-
consistent assumption-based frameworks, any preferred set of assumptions, which
is guaranteed to exist by corollary 4.1, is also stable. Thus, for order-consistent
frameworks, preferred and stable semantics exist and coincide (but might not be
unique).

Both classes of framework are characterised in terms of their attack relationship
graphs.

Definition 7.1 The attack relationship graph of a flat assumption-based framework
(T, Ab, ) is a directed graph whose nodes are the assumptions in Ab and such that
there exists an edge from an assumption  to an assumption « if and only if § belongs
to a minimal (with respect to set inclusion) attack A against .

Definition 7.2 A flat assumption-based framework is stratified if and only if its
attack relationship graph is well-founded, i.e. it contains no infinite path of the
form aq,...,ay, ..., where for every n > 0 there is an edge from ;41 to au,.
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Example 7.1 The framework corresponding to the logic program

{p — notq, q < notp}

is not stratified, because its attack relationship graph has an infinite path:
notp, notq, ..., notp, notq,...

Example 7.2 The framework corresponding to the logic program

{p(X) — notp(s(X)), p(0)}

is not stratified, because its attack relationship graph has an infinite path:
not p(0), not p(s(0)), not p(s(s((0))), . ..

Theorem 7.1 For any stratified assumption-based framework, there exists a unique
stable set of assumptions, which coincides with the well-founded set of assumptions.

Proof : We need to show only that the well-founded set of assumptions is stable.
From this and from the fact that the well-founded set of assumptions is contained
in every stable set, it follows that there exists a unique stable set, which coincides
with the well-founded set of assumptions.

Let (T, Ab, —) be a stratified assumption-based framework and let A C Ab be
the well-founded set of assumptions of (T, Ab, —). Trivially, A does not attack
itself. Moreover, since (T, Ab, —) is flat, A is closed. It remains to show that A
attacks every o € A.

Assume the contrary. We will construct an infinite sequence of assumptions
Qqg, - . ., Qln, - .. Such that

e for each i > 0, a; € A and «; is not attacked by A,

e for each ¢ > 0, there is an edge from ;41 to «; in the attack relationship
graph,

contradicting the assumption that (7', Ab, —) is stratified.

First, from the assumption that A is not stable, it is clear that there exists an
ag € A such that «g is not attacked by A. Suppose we have already constructed a
finite sequence ay, . . ., a;, satisfying the above two properties. Then «,, ¢ A. There-
fore, A does not defend «,,, and there exists a minimal A’ such that A’ attacks a,
but A does not attack A’ — A. So there exists a; 11 € A’ — A such that a;;1 is not
attacked by A. It is clear that there exists an edge from a1 to «;. q.e.d.

There are meaningful frameworks which have a stable semantics but are not strati-
fied, for example the framework corresponding to the logic program in example 7.1.
We will show that for the class of order-consistent frameworks, which contains this
program, a stable semantics always exists.

We will call an assumption ¢ “hostile” to an assumption « if either it belongs
to a minimal attack against « or it is hostile to an assumption which is friendly to
«. An assumption [ is “friendly” to « if 8 is a or 3 is hostile to an assumption §
which is hostile to . An assumption § is “two-sided” towards an assumption « if
it is both hostile and friendly. Equivalently:
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Definition 7.3 Given a flat assumption-based framework (7', Ab, ), let §, « € Ab.

e J is friendly to o if and only if there exists in the attack relationship graph for
(T, Ab, —) a path with an even number of edges from ¢ to .

e ) is hostile to « if and only if in the attack relationship graph for (T', Ab, )
there exists a path with an odd number of edges from § to a.

e § is two-sided to «, written § < «, if and only if in the attack relationship
graph for (T, Ab, —) there exist both a path with an even number of edges
and a path with an odd number of edges from § to a.

Definition 7.4 A flat assumption-based framework (T', Ab, ) is order-consistent
if the relation < is well-founded, i.e. there exists no infinite sequence aq, ..., ay, ...
where for every n > 0, apt1 < ay.

Example 7.3 The framework corresponding to the logic program

{p < not p}

is not order-consistent, because there exists an infinite sequence notp, ..., notp, ...
It is easy to see that
Theorem 7.2 Every stratified assumption-based frameworks is order-consistent.

Theorem 7.3 For every order-consistent assumption-based framework stable sets
of assumptions are preferred sets of assumptions and vice versa.

Proof: Since every stable set of assumptions is preferred, we need to prove only that
every preferred set of assumptions is stable. Let (T, Ab, —) be an order-consistent
assumption-based framework and let A C Ab be a preferred set of assumptions
which is not stable. We will construct an admissible set Ay containing A as a
proper subset, thereby contradicting the assumption that A is preferred.

Let AV = Ab — (A U {«a| A attacks « }). Since A is not stable, it is clear that
Ab' is not empty.

Let o € Ab be such that there exists no § € Ab such that a > 8. (The existence
of such « is guaranteed by the order-consistency of the framework.)

Define Sy (resp. S1) to be the set consisting of all those 5 € Ab' such that there
exists a path with an even (resp. odd) number of edges in the attack relationship
graph from 3 to a. It follows from the definition of o that Sy and S; are disjoint.
Note that due to the definition of o, o € Sy. Hence Sy # 0.

Note that there exists at least one attack A against each § € S; such that
0 #A—A CSy (otherwise either 3 is attacked by A or 3 is defended by A. Either
way, 3 ¢ Ab'). This implies that A U Sy attacks each assumption in Sj.

Let Ag = AU Sy. We want to show now that A is admissible. Let A’ be an
attack against some assumption in Sy. If A attacks A’ then there is nothing to
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prove. Assume now that A does not attack A’. Therefore ) # A’ — A C Ab'. Hence
A" — A C Sy. Hence Ag attacks A’ — A. This means that Ag attacks A’. Further,
we show that Ag does not attack itself. If A did attack itself, then Ay would attack
A or So. If Ay did attack Sp, then Ab' N (Ao — A) C 51. From Sy = Ag — A, it
follows Sy C S1, which is impossible. If Ag did attack A, then, since A is preferred,
A would attack A, contradicting the assumption that A is preferred, or Sy, contra-
dicting the assumption that Sy C Ab. Therefore Aq is admissible and contains A
as a proper subset. q.e.d.

It follows directly from the definitions that the abstract notions of stratification
and order-consistency generalise the notions of stratification and order-consistency
for logic programming;:

Theorem 7.4 If P is a stratified logic program [4], then the corresponding assumption-
based framework (P, Ab, ) is stratified. Similarly, if P is an order-consistent logic
program [51], then the corresponding assumption-based framework (P, Ab, ) is
order-consistent.

8 Related work

The role of argumentation in human reasoning has been studied both inside and out-
side the field of artificial intelligence. Outside artificial intelligence, both Toulmin’s
[58] philosophical analysis of argumentation and Lorenz and Lorenzen’s [34] logical
analysis of classical logic as an argumentation game are particularly noteworthy.

Among the earliest investigations of argumentation in artificial intelligence, the
work of Alvarado [2] and Birnbaum, Flowers and McGuire [3] focused on under-
standing the structure of arguments in editorials and political dialogues.

Pollock’s work [41] bridges the fields of philosophy and artificial intelligence
and, like this paper, addresses the use of argumentation for default reasoning. He
constructs a theory of defeasible reasoning that takes into account the relations
between arguments supporting contradictory conclusions. Dung [11] showed that
Pollock’s theory of defeasible reasoning corresponds to the computable part of the
well-founded semantics of section 6.1 in this paper. In his later work [42], Pollock
develops an alternative, credulous semantics for defeasible reasoning. It is easy to
see that this corresponds to the “stable theory” semantics for normal logic programs
proposed by Kakas and Mancarella [28] and mentioned at the end of section 4.

Simari and Loui [54] extend Pollock’s sceptical semantics to incorporate Poole’s
formalisation of the principle that specific defaults have higher priority than more
general defaults.

Vreeswijk [61] analyses different kinds of priorities that can arise between con-
flicting arguments and uses this analysis to decide how to resolve the conflict. But
he does not develop this into a complete logic for default reasoning.

Touretzky, Horty and Thomason, [59] argue that Pollock’s argumentation system
can not be used to formalise non-monotonic inheritance reasoning. Dung and Son
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[15] counterargue against [59] by showing that non-monotonic inheritance can be
formalised using the argumentation-theoretic methods of this paper.

The approach to argumentation taken in this paper is most closely related to our
earlier formalisations [6, 11], which were based upon the argumentation-theoretic
interpretation of negation as failure in logic programming introduced by Kakas,
Kowalski and Toni [25]. This was inspired, in part, by Dung’s admissibility and pre-
ferred semantics [10] for logic programming, which was motivated, in turn, by Eshghi
and Kowalski’s abductive interpretation of stable model semantics [16, 17]. Dung
subsequently formalised [11] argumentation in abstract terms, taking the notion of
attack and argument as primitive.

In this paper, we revert to the approach taken in [25] and developed further in
[6] in which assumptions are taken as primitive and both attacks and arguments
are defined in terms of the monotonic derivability of conclusions based upon sets of
assumptions.

Kakas [24] generalised the argumentation-theoretic interpretation of negation as
failure and applied it to other logics for default reasoning. In particular, he proposed
an argumentation-theoretic semantics for default logic different from the standard
semantics and analogous to the acceptability semantics [27] for logic programming.

Toni and Kakas [55] develop abstract argumentation-theoretic proof procedures
for computing admissibility, weak stability [28] and acceptability semantics [27] for
default reasoning in general and normal logic programming in particular. In the
companion paper [13] we show how an abstract proof procedure for the admissibility
semantics can be derived systematically from its specification.

Recently, a number of authors have investigated other applications of argumen-
tation to logic programming. Kakas, Mancarella and Dung [27] and Kakas and
Dimopoulos [9] investigate argumentation-theoretic semantics and proof procedures
for extended logic programs without negation as failure, but with priorities between
clauses. Alferes and Pereira [1] use argumentation to expand the well-founded model
of normal and extended logic programs. You and Cartwright [62] investigate the
tractability of argumentation semantics for extended logic programming.

Independently of these developments, Geffner [18] shows that the well-founded
semantics of logic programming can be understood in argumentation-theoretic terms.
He also presents a bottom-up proof procedure for this semantics. Based upon
Geflner’s notion of argumentation, Torres [57] proposes an argumentation-theoretic
semantics for negation as failure that is equivalent to Kakas and Mancarella’s stable
theory semantics [28].

Although our approach is based upon the abductive interpretation of negation
as failure [16, 17] and Dung’s admissibility and preferred semantics [10], it parallels
many other approaches to argumentation developed independently in artificial in-
telligence. Among these, the work of Lin and Shoham’s [33] is most clearly related
to ours both in its aims and its methods.

Lin and Shoham [33] similarly develop an abstract argumentation-theoretic frame-
work with the goal of capturing the semantics of many existing non-monotonic logics.
They show that different variants of a single abstract notion of complete set of ar-
guments corresponds to the standard semantics of default logic and autoepistemic
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logic. They also show a relationship to the semantics of stratified logic programs
and the semantics of circumscription. Their notion of complete set of arguments is
similar to our notion of stable set of assumptions.

Brewka and Konolige [7] also investigate default reasoning at a similar level of ab-
straction in abductive terms, but without employing an explicit notion of argument.
They propose a new semantics, which they apply to a variety of non-monotonic
logics, and which they argue improves upon the standard semantics of these logics.

Marek, Nerode and Remmel [36, 37] use their non-monotonic rule systems to
provide an abstract framework to reconstruct the standard semantics of many non-
monotonic logics. But they do not employ explicit notions of abduction or argu-
mentation, and they do not consider the case of circumscription.

A number of other authors have employed argumentation for developing proof
procedures rather than for semantics. Geffner and Pearl [19], for example, develop
such a proof procedure for a conditional logic which has a sceptical model-theoretic
semantics similar to circumscription. However, the proof procedure is incomplete
for this semantics. we conjecture that the reason for this incompleteness may be
that the proof procedure computes the well-founded semantics instead.

Ginsberg [22] and Baker and Ginsberg [5] develop an argumentation-theoretic
proof procedure for circumscription. Like our argumentation-theoretic semantics
of circumscription, their proof procedure is restricted to a case where arbitrary
interpretations and Herbrand interpretations coincide.

Argumentation has become an important topic of research recently in the field
of artificial intelligence and law. Prakken [46], for example, extends default logic
using argumentation-theoretic notions to establish a preference between arguments
based upon priorities between different default rules. Prakken and Sartor [47] for-
malise similar notions using the language of extended logic programs augmented with
priorities. They extend Dung’s [12] grounded semantics, which is a well-founded se-
mantics for extended logic programs, to incorporate such priorities. Kowalski and
Toni [31], on the other hand, argue that priorities can be dealt with by expressing
the assumption that a rule is not defeated by a higher priority rule by means of an
explicit condition of the rule rather than by dealing with priorities in the semantics.

9 Conclusions and Future Work

The abstract argumentation-theoretic semantics we developed in this paper shows
that most formalisations of default reasoning can be viewed as extending a given
theory by means of assumptions. In each case, these assumptions can be understood
as expressing that their contraries can not be shown. In most cases, the existing
semantics sanction an extension if it is maximal conflict-free or if it is stable in the
sense that it attacks all assumptions not in the extension. Many of these semantics
are credulous, sanctioning a conclusion if it holds in some acceptable extension.
Others are sceptical, sanctioning a conclusion if it holds in all acceptable extensions.

We have argued that stable semantics, which is the standard semantics of most
formalisations of default reasoning, is too restrictive and have proposed admissibility
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semantics as an alternative. As we have remarked earlier, admissibility semantics can
also be improved by generalising the stable theory semantics [28] and acceptability
semantics [27] for logic programming of Kakas and Mancarella.

Admissibility semantics and its improvements have the further advantage over
stable semantics that they can be implemented more easily by means of a natural
refinement of the semantics. In a companion paper [13], we show how most proof
procedure for such semantics can be derived from the semantics. For this purpose
we formalise the proof procedure as a logic program and the semantics as a program
specification. We use well established techniques for logic program synthesis and
verification to derive the program from the specification.

We forsee three main research direction for the work presented in this paper:

1. Other existing logics and other semantics for default reasoning can be inves-
tigated in argumentation-theoretic terms. In particular, it would be useful
to determine whether any of the many existing proposals for improving the
semantics of existing logics correspond to the admissibility semantics and its
improvements.

2. The abstract argumentation theoretic framework should be developed further
with the aim of identifying other improvements. If possible, we should evaluate
the different existing logics in argumentation terms with the aim of identifying
the best features of the individual logics and incorporating them into a single
formalism.

3. The argumentation theory should be applied to other problems of practical
reasoning in areas such as law. We are particularly interested in the possibility
that argumentation can help to reconcile conflicts between different sets of
hypotheses. Some preliminary thoughts of this kind have been presented in
[30].
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