
Generating and Optimising Views from
Both as View Data Integration Rules

Edgar Jasper1, Nerissa Tong2, Peter Mc.Brien2, and Alexandra Poulovassilis1

1 School of Computer Science and Information Systems, Birkbeck College,
Univ. of London, {edgar,ap}@dcs.bbk.ac.uk

2 Dept. of Computing, Imperial College, {nnyt98,pjm}@doc.ic.ac.uk

Abstract. This paper describes the generation and logical optimisation of views
in the AutoMed heterogeneous data integration framework, which is based on
the use of reversible schema transformation sequences called both as view (BAV)
rules. We show how views can be generated from such sequences, for global as
view (GAV), local as view (LAV) and GLAV query processing. We also present
techniques for optimising these generated views, firstly by optimising the trans-
formation sequences, and secondly by optimising the view definitions generated
from them.

1 Introduction

Data integration is a process by which several databases, with associated local schemas,
are integrated to form a single virtual database with an associated global schema.
The two most common data integration approaches are global as view (GAV) (used
in TSIMMIS [4], InterViso [19] and Garlic [18]), and local as view (LAV) (used in IM
[9] and Agora [11]). In GAV, the constructs of a global schema are described as views
over the local schemas. These view definitions are used to rewrite queries over a global
schema into distributed queries over the local databases. In LAV, the constructs of the
local schemas are defined as views over the global schema, and processing queries over
the global schema involves rewriting queries using views [8].

Both LAV and GAV lack a certain degree of expressiveness. GAV is unable to fully
capture data integration semantics where a source schema construct can be defined by a
non-reversible function over global schema constructs. For example, if source schema
attribute money is the sum of global schema attributes coins and notes, neither coins
nor notes in the global schema can be defined by views over the source schema. Thus a
query on the global schema asking for the sum of coins and notes cannot be answered
even though the answer (money) is present in the source schema. In LAV, the attribute
money can be defined by a view as the sum of global schema attributes coins and
notes. Reversing the presence of the attributes, so that coins and notes are in the local
schema and money in the global schema, leads to a situation which GAV can express
but LAV cannot.

GLAV [5] is a variation of LAV that allows the head of the view definition rules to
contain conjunctions of relations from a source schema as a natural join, and is thus able
to capture situations where a non-reversible function is a natural-join between attributes.
In [10] GLAV was extended to allow any source schema query in the head of the rule,

and hence is able to express the case where a single source schema is used to define the
global schema constructs referenced in the body of the rule.

We have developed a richer integration framework which is based on the use of
reversible sequences of primitive schema transformations, called transformation path-
ways. In [15] we showed how these pathways incorporate the semantics of GAV rule
definitions and LAV rule definitions, and hence termed our approach both as view
(BAV). We have implemented the BAV data integration approach within the AutoMed
system (see http://www.doc.ic.uk/automed).

Since BAV integration is based on sequences of primitive schema transformations,
it could be argued that the pathways resulting from BAV are likely to be more costly to
reason with and process (e.g. for global query processing) than the corresponding LAV,
GAV or GLAV view definitions would be. However, in Section 5 of this paper we show
how BAV pathways are amenable to considerable simplification. Moreover, standard
query optimisation techniques can be applied to the view definitions derived from BAV
pathways.

The outline of this paper is as follows. Section 2 gives a review and examples of
the BAV integration approach, and compares it with the GAV, LAV and GLAV ap-
proaches. Section 3 shows how view definitions can be generated from BAV pathways
for GAV, LAV or GLAV query processing. Section 4 presents techniques for optimising
these generated views, and Section 5 gives techniques for optimising the BAV pathways
themselves. Section 6 gives our concluding remarks and directions of further work.

2 The BAV Integration Approach

In previous work (see http://www.doc.ic.uk/automed) we have developed a
framework to support schema transformation and integration in heterogeneous database
architectures. The framework consists of a low-level hypergraph-based data model
(HDM) and a set of primitive schema transformations defined for this model. Higher-
level data models and primitive schema transformations for them are defined in terms
of this lower-level common data model.

In BAV, schemas are incrementally transformed by applying a sequence of primi-
tive transformations t1, . . . , tr, where each ti adds, deletes or renames just one schema
construct. Each add or delete transformation is accompanied by a query, expressed in
the intermediate query language (IQL), specifying the extent of the new or deleted
construct in terms of the rest of the constructs in the schema. All primitive transforma-
tions have an optional additional argument which specifies a constraint (also expressed
in the IQL) on the current schema extension that must hold if the transformation is to
be applied.

A composite transformation is a sequence of primitive transformations. We term
the composite transformation defined for transforming schema S1 to schema S2 a trans-
formation pathway S1 → S2. All source schemas, intermediate schemas and global
schemas, and the pathways between them are stored in AutoMed’s metadata reposi-
tory [1].

AutoMed supports a variety of methodologies for performing data integration and
hence forming a network of pathways joining schemas together. For example, Figure 1
illustrates the integration of n local schemas, LS1, . . . , LSn, into a global schema GS.

In order to integrate these n local schemas, each LSi is first transformed into a “union”
schema USi. These n union schemas are syntactically identical, and this is asserted by
creating a sequence of id transformation steps between each pair USi and USi+1, of
the form id (USi :c, USi+1 :c) for each schema construct.

id is an additional type of primitive transformation, and the notation USi : c is used
to denote construct c appearing in schema USi. These id transformations are gener-
ated automatically by the AutoMed software. An arbitrary one of the USi can then be
selected for further transformation into a global schema GS. This is where constructs
sourced from different local schemas can be combined together by unions, joins, outer-
joins etc.

There may be information within a USi which is not semantically derivable from the
corresponding LSi. This is asserted by means of extend transformation steps within the
pathway LSi → USi. Conversely, not all of the information within a local schema LSi

need be transferred into USi, and this is asserted by means of contract transformation
steps within LSi → USi. These extend and contract transformations behave in the
same way as add and delete, respectively, except that they indicate that only partial
information can be derived about the new or deleted construct. Rather than a single
query, they take a pair of queries which specify a lower and upper bound on the extent
of the new or deleted construct. The lower bound query may be the constant Void if no
lower bound can be specified, and the upper bound query may be the constant Any if
no upper bound can be specified.

LS1 LS2 LS3
. . . LSi

. . . LSn
local

schemas

6? 6? 6? 6? 6?

US1 US2 US3
. . . USi

. . . USn

id-� id-� � - � -
union

compatible
schemas

6?

GS
global

schema

Fig. 1. A general AutoMed Integration

Each primitive transformation t has an automatically derivable reverse transfor-
mation t. In particular, each add or extend transformation is reversed by a delete
or contract transformation with the same arguments, and vice versa, while each re-
name or id transformation is reversed by another rename or id transformation with
the two arguments swapped. This holds for the primitive transformations of any mod-
elling language defined in AutoMed. In [12] we show how this reversibility of schema
transformations allows automatic data query translation between schemas.

In [13] we described how our framework can be applied to different high-level mod-
elling languages such as relational, ER and UML, and more recently we have extended
AutoMed to also support semi-structured data models (flat file, XML, RDF). For our ex-
amples in this paper we will use a simplified relational data model. However, we stress

that the techniques that we describe here are equally applicable to any data modelling
language supported by AutoMed.

In our simple relational model, there are two kinds of schema construct: Rel and
Att (see [13] for an encoding of a richer relational data model, including the modelling
of constraints).

The extent of a Rel construct 〈〈R〉〉 is the projection of the relation R onto its primary
key attributes k1, ..., kn. The extent of each Att construct 〈〈R, a〉〉 where a is an attribute
(key or non-key) is the projection of relation R onto k1, ..., kn, a. For example, a relation
student(id,sex,dname) would be modelled by a Rel construct 〈〈student〉〉, and three
Att constructs 〈〈student, id〉〉, 〈〈student, sex〉〉 and 〈〈student, dname〉〉.

+ � U s

k1 kn

. . .

a1 am

. . .

R

Fig. 2. A simple relational data model

Once the constructs of modelling languageM have been defined in terms of the
HDM (via the API of AutoMed’s metadata repository [1]), a set of primitive schema
transformations for M are automatically available. For the simple relational model
above, these would be as follows:

– addRel(〈〈R〉〉, q) adds to the schema a new relation R. The query q specifies the
set of primary key values in the extent of R in terms of the already existing schema
constructs.

– addAtt(〈〈R, a〉〉, q) adds to the schema an attribute a (key or non-key) for relation
R. The query q specifies the extent of the binary relationship between the primary
key attribute(s) of R and this new attribute a in terms of the already existing schema
constructs.

– deleteRel(〈〈R〉〉, q) deletes from the schema the relation R (provided all its at-
tributes have first been deleted). The query q specifies how the extent of R can be
restored from the remaining schema constructs.

– deleteAtt(〈〈R, a〉〉, q) deletes from the schema attribute a of relation R. The query
q specifies how the extent of the binary relationship between the primary key at-
tribute(s) of R and a can be restored from the remaining schema constructs.

– renameRel(〈〈R〉〉, 〈〈R′〉〉) renames the relation R to R′ in the schema.
– renameAtt(〈〈R, a〉〉, 〈〈R, a′〉〉) renames the attribute a of R to a′.

There is also a set of extendRel, extendAtt, contractRel and contractAtt primitive
transformations.

2.1 An Example Integration

Figure 3 gives some specific schemas to illustrate the integration approach of Figure 1.
Primary key attributes are underlined, foreign key attributes are in italics and nullable
attributes are suffixed by a question mark.

LS1 staff(id,name,dname)
male(id)
female(id)

LS2 university(uname)
campus(cmname,uname)
dept(deptname,cmname)
degree(dcode,title,dtype,deptname)

LS3 student(id,name,sex)
enrolled(id,from,to,dcode)
degree(dcode)

LS4 university(uname)
college(cname,uname)
dept(dname,street,cname)

USi university(uname)
campus(cmname,uname)
dept(dname,street,cmname)
degree(dcode,title,dtype,dname)
staff(id,name,sex,dname)
student(id,name,sex)
enrolled(id,from,to,dcode)

GS university(uname)
campus(cmname,uname)
dept(dname,street,cmname)
degree(dcode,title,dtype,dname)
person(id,name,sex,dname?)
enrolled(id,from,to,dcode)

Fig. 3. Example schemas

In Example 1, transformations t1–t5 use a composite transformation extendTable to
state that the tables student, enrolled, university, campus and degree in US1 cannot
be derived from LS1. The definition of extendTable is:

extendTable(〈〈R, a1, . . . , an〉〉) = extendRel(〈〈R〉〉, Void, Any);
extendAtt(〈〈R, a1〉〉, Void, Any); . . . ; extendAtt(〈〈R, an〉〉, Void, Any)

Then transformations t6–t9 use the dname attribute of staff to derive the dept table
in US1, and use extend transformations for the two attributes street and uname that
cannot be derived from LS1. Finally, in t10–t14 the male and female relations of LS1

are restructured into the single sex attribute of staff.
The queries accompanying the add and delete transformations are expressed in our

IQL intermediate query language. In IQL, ++ is the bag union operator and the construct
[e | Q1; . . .Qn] is a comprehension [2]. The expressions Q1 to Qn are termed qual-
ifiers, each qualifier being either a filter or a generator. A filter is a boolean-valued
expression. A generator has syntax p ← c where p is a pattern and c is a bag-valued
expression. In IQL, the patterns p are restricted to be single variables or tuples of vari-
ables.

Example 1 Pathway LS1 → US1

t1 extendTable(〈〈student, id, name, sex〉〉)
t2 extendTable(〈〈university, uname〉〉)

t3 extendTable(〈〈campus, cmname, uname〉〉)
t4 extendTable(〈〈degree, dcode, title, dtype, dname〉〉)

t5 extendTable(〈〈enrolled, id, from, to, dcode〉〉)
t6 addRel(〈〈dept〉〉, [x | (y, x)← 〈〈staff, dname〉〉])

t7 addAtt(〈〈dept, dname〉〉, [(x, x) | x← 〈〈dept〉〉])
t8 extendAtt(〈〈dept, street〉〉, Void, Any)
t9 extendAtt(〈〈dept, uname〉〉, Void, Any)

t10 addAtt(〈〈staff, sex〉〉, [(x, ‘M’) | x← 〈〈male〉〉] ++ [(x, ‘F’) | x← 〈〈female〉〉])
t11 deleteAtt(〈〈male, id〉〉, [(x, x) | x← 〈〈male〉〉])

t12 deleteRel(〈〈male〉〉, [x | (x, ‘M’)← 〈〈staff, sex〉〉])
t13 deleteAtt(〈〈female, id〉〉, [(x, x) | x← 〈〈female〉〉])
t14 deleteRel(〈〈female〉〉, [x | (x, ‘F’)← 〈〈staff, sex〉〉])

The pathway LS2 → US2 contains extend steps to add the missing staff, student,
and enrolled tables. It then renames deptname, and adds the missing attributes of
dept:

Example 2 Pathway LS2 → US2

t15 extendTable(〈〈student, id, name, sex〉〉)
t16 extendTable(〈〈staff, id, name, sex, dname〉〉)
t17 extendTable(〈〈enrolled, id, from, to, dcode〉〉)
t18 renameAtt(〈〈dept, deptname〉〉, 〈〈dept, dname〉〉)
t19 renameAtt(〈〈degree, deptname〉〉, 〈〈degree, dname〉〉)
t20 extendAtt(〈〈dept, street〉〉, Void, Any)
t21 extendAtt(〈〈dept, uname〉〉, Void, Any)

The pathway LS3 → US3 contains a sequence of extend steps for its missing in-
formation. The pathway LS4 → US4 creates in t22 a new attribute 〈〈dept, uname〉〉 by
joining the dept and college relations, and then deletes in t23–t25 the college table
that can be recovered from the remaining 〈〈dept, cname〉〉 attribute. Transformation t26

is unable to put any restriction on the values of 〈〈dept, cname〉〉, since that association
cannot be recovered from the global schema. Transformations t27–t31 then perform the
logical inverse of t22–t26 to partially extract the campus table from the direct associa-
tion between departments and universities represented by 〈〈dept, uname〉〉.

Example 3 Pathway LS4 → US4

t22 addAtt(〈〈dept, uname〉〉,
[(x, y) | (x, z)← 〈〈dept, cname〉〉; (z, y)← 〈〈college, uname〉〉])

t23 deleteAtt(〈〈college, uname〉〉,
[(x, y) | (z, x)← 〈〈dept, cname〉〉; (z, y)← 〈〈dept, uname〉〉])

t24 deleteAtt(〈〈college, cname〉〉, [(x, x) | x← 〈〈college〉〉])
t25 deleteRel(〈〈college〉〉, [y | (x, y)← 〈〈dept, cname〉〉])

t26 contractAtt(〈〈dept, cname〉〉, Void, Any)
t27 extendAtt(〈〈dept, cmname〉〉, Void, Any)
t28 addRel(〈〈campus〉〉, [y | (x, y) ← 〈〈dept, cmname〉〉])

t29 addAtt(〈〈campus, cmname〉〉, [(x, x) | x← 〈〈campus〉〉])

t30 addAtt(〈〈campus, uname〉〉,
[(x, y) | (z, x)← 〈〈dept, cmname〉〉; (z, y)← 〈〈dept, uname〉〉])

t31 delAtt(〈〈dept, uname〉〉,
[(x, y) | (x, z)← 〈〈dept, cmname〉〉; (z, y)← 〈〈campus, uname〉〉])

t32 extendTable(〈〈student, id, name, sex〉〉)

t33 extendTable(〈〈staff, id, name, sex, dname〉〉)
t34 extendTable(〈〈enrolled, id, from, to, dcode〉〉)

Finally, we list in Example 4 the pathway from the union schema US1 to the global
schema GS. The pathway from US2, US3 or US4 would be identical.

Example 4 Pathway US1 → GS

t35 addRel(〈〈person〉〉, 〈〈staff〉〉 ++ [x | x← 〈〈student〉〉; not (member x 〈〈staff〉〉)])
t36 addAtt(〈〈person, id〉〉, 〈〈staff, id〉〉 ++

[(x, y) | (x, y)← 〈〈student, id〉〉; not (member x 〈〈staff〉〉)])

t37 addAtt(〈〈person, name〉〉, 〈〈staff, name〉〉 ++
[(x, y) | (x, y)← 〈〈student, name〉〉; not (member x 〈〈staff〉〉)])

t38 addAtt(〈〈person, sex〉〉, 〈〈staff, sex〉〉++
[(x, y) | (x, y)← 〈〈student, sex〉〉; not (member x 〈〈staff〉〉)])

t39 addAtt(〈〈person, dname〉〉, 〈〈staff, dname〉〉)

t40 contractAtt(〈〈student, id〉〉, [(x, y) | (x, y)← 〈〈person, id〉〉;
not (member x 〈〈staff〉〉)], [(x, y) | (x, y) ← 〈〈person, id〉〉])

t41 contractAtt(〈〈student, name〉〉, [(x, y) | (x, y)← 〈〈person, name〉〉;
not (member x 〈〈staff〉〉)], [(x, y) | (x, y) ← 〈〈person, name〉〉])

t42 contractAtt(〈〈student, sex〉〉, [(x, y) | (x, y)← 〈〈person, sex〉〉;
not (member x 〈〈staff〉〉)], [(x, y) | (x, y) ← 〈〈person, sex〉〉])

t43 contractRel(〈〈student〉〉), [x | x← 〈〈person〉〉; not (member x 〈〈staff〉〉)],
[x | x← 〈〈person〉〉])

t44 deleteAtt(〈〈staff, id〉〉, [(x, y) | (x, y)← 〈〈person, id〉〉; member x 〈〈staff〉〉])
t45 deleteAtt(〈〈staff, name〉〉, [(x, y) | (x, y)← 〈〈person, name〉〉; member x 〈〈staff〉〉])
t46 deleteAtt(〈〈staff, sex〉〉, [(x, y) | (x, y)← 〈〈person, sex〉〉; member x 〈〈staff〉〉])
t47 deleteAtt(〈〈staff, dname〉〉, 〈〈person, dname〉〉)
t48 deleteRel(〈〈staff〉〉, [x | (x, y)← 〈〈person, dname〉〉])

We assume in this example integration that a person may be both a member of
staff and a student. For such people, their information in the staff table is preferred
for propagation to the global person table in steps t35–t38 above. Thus, there is not
sufficient information in the global schema to totally derive the student table, and only
contract statements can be given in steps t40–t43, where as a lower bound we know all
persons not in the staff table are students, but as an upper bound know that all persons
could be in student (if it were the case that all staff members were former students).
Conversely, there is sufficient information to totally derive the staff table.

2.2 Comparison of BAV with GAV, LAV and GLAV

We see from the above example that the add and extend steps in the transformation
pathways from the local schemas to the global schema correspond to GAV, since it
is these steps that are incrementally defining global constructs in terms of local ones.
Similarly, it is the delete and contract steps in the transformation pathways from the
local schemas to the global schema that correspond to LAV, since it is these steps that are
incrementally defining local constructs in terms of global ones. We will see in Section 3
how these pathways can be traversed to derive GAV and LAV views.

If a GAV view is derived from solely add steps it will be exact in the terminology of
[7]. If, in addition, it is derived from one or more extend steps using their lower-bound

(upper-bound) queries, then the GAV view will be sound (complete) in the terminology
of [7]. Similarly, if a LAV view is derived solely from delete steps it will be exact.
If, in addition, it is derived from one or more contract steps using their lower-bound
(upper-bound) queries, then the LAV view will be complete (sound) in the terminology
of [7]. For example, in pathway US1 → GS above, we could enhance t43 above to:
contractRel(〈〈student〉〉, [x | x← 〈〈person〉〉; not (member x 〈〈staff〉〉)], 〈〈person〉〉])
asserting that 〈〈student〉〉 contains the set of people who are not staff (completeness)
and is contained by the whole set of people (soundness).

As we discussed in the introduction, BAV is a more expressive data integration lan-
guage than LAV, GAV or GLAV, since it allows for the expression of mappings in both
directions, and since it is not limited on how many source schemas are associated by
a mapping. Indeed, in the context of peer-to-peer integration, [3] has suggested using
GLAV rules in both directions in a similar manner to BAV, in order to overcome weak-
nesses of using GLAV alone.

As discussed in [14, 15], a further advantage of BAV over GAV and LAV is that it
readily supports the evolution of both global and local schemas, by allowing pathways
and schemas to be incrementally modified as opposed to having to be regenerated.

A further difference between BAV and GAV, LAV or GLAV (including the approach
of using GLAV in each direction of [3]) is that statements about the relationships be-
tween global and local schemas are made at a finer level of detail, i.e. at the level
of individual attributes as opposed to entire tables. So we can assert exact knowledge
about some attributes of a table, and sound or complete knowledge about other at-
tributes. We are also able to introduce intermediate constructs in the mapping, such as
in LS4 → US4.

3 Generating Views

We now present a general technique for generating GAV, LAV and GLAV view defini-
tions from a BAV pathway. This ability to generate any of these kinds of view definitions
from a single BAV pathway means that we can select a query processing technique that
can vary between queries as appropriate.

To define a construct c in Sx in terms of the constructs in schema Sy, we consider
in turn the transformations of Sx → Sy. The only transformations that are significant
are those that delete, contract or rename a construct1. These transformations are sig-
nificant because the current view definitions may query constructs that no longer exist
after such a transformation. Each of these types of transformation is handled as follows
if it is encountered during the traversal of Sx → Sy:

– delete: This has an associated query which shows how to reconstruct the extent
of the construct being deleted. Any occurrence of the deleted construct within the
current view definitions is replaced by this query.

– contract: Any occurrence of the contracted construct within the current view def-
initions is replaced by either the lower-bound or the upper-bound query accompa-

1 Note that this is equivalent to considering the add, extend and rename steps in the reverse
Sy → Sx

nying this transformation step, depending on whether sound or complete views are
required.

– rename: All references to the old construct in the current view definitions are re-
placed by references to the new construct.

3.1 Generating GAV Views

To generate the set of GAV views for a global schema, the pathways from it to each lo-
cal schema are retrieved from AutoMed’s metadata repository. For some part of the start
of their length these pathways may be the same, as may be seen from the tree structure
of Figure 1. Each node of this transformations tree is a schema (global, intermediate
or local) linked to its neighbours by a single transformation step. View definitions for
each global schema construct are derived by traversing the tree from top to bottom. Ini-
tially, each construct’s view definition is just the construct itself. Each node in the tree
is then visited in a downwards direction, and delete, contract and rename transfor-
mations are handled as described above. In particular, if a contract transformation step
is encountered, any occurrence of the contracted construct within the current GAV view
definitions is replaced by the lower-bound query accompanying this transformation step
(so that sound GAV views will be generated).

At some points the tree may branch. When this happens, constructs of the parent
schema are semantically identical to constructs that have the same scheme within the
child schemas. The possibility of using all paths is retained within the view definitions
by replacing each construct of the parent schema by a disjunction (OR) of the corre-
sponding constructs in the child schemas.

The tree is traversed in this fashion from the root to the leaves until all the nodes are
visited. The resulting view definitions are the GAV definitions for the global schema
constructs over the local schemas. Referring again to the example of Section 2.1, con-
sider the construct GS : 〈〈person, sex〉〉 in the global schema. The pathway GS → US1

would be processed first (i.e. the reverse of the pathway US1 → GS listed in Sec-
tion 2.1). The only significant transformation is t38 that deletes 〈〈person, sex〉〉, resulting
in an intermediate view definition:
GS :〈〈person, sex〉〉 :- US1 :〈〈staff, sex〉〉 ++

[(x, y) | (x, y)← US1 :〈〈student, sex〉〉; not (member x US1 :〈〈staff〉〉)]
at one copy, US1, of the four union schemas. Traversing the pathways US1 → LS1 and
US1 → US2, we replace the body of the view definition with:

([(x, ‘M’) | x← LS1 :〈〈male〉〉] ++ [(x, ‘F’) | x← LS1 :〈〈female〉〉] OR

US2 :〈〈staff, sex〉〉)
++ ([(x, y) | (x, y) ← Void OR US2 :〈〈student, sex〉〉;

not (member x (LS1 :〈〈staff〉〉 OR US2 :〈〈staff〉〉))])
Traversing next US2 → LS2 and US2 → US3, we get:

([(x, ‘M’) | x← LS1 :〈〈male〉〉] ++ [(x, ‘F’) | x← LS1 :〈〈female〉〉]) OR

Void OR US3 :〈〈staff, sex〉〉)
++ ([(x, y) | (x, y) ← Void OR Void OR US3 :〈〈student, sex〉〉;

not (member x (LS1 :〈〈staff〉〉 OR Void OR US3 :〈〈staff〉〉))])
Continuing with US3 → LS3, US3 → US4 and finally US4 → LS4, we obtain the view
definition:

GS :〈〈person, sex〉〉 :-
([(x, ‘M’) | x← LS1 :〈〈male〉〉] ++ [(x, ‘F’) | x← LS1 :〈〈female〉〉])OR

Void OR Void OR Void)
++ ([(x, y) | (x, y)← Void OR Void OR LS3 :〈〈student, sex〉〉 OR Void;

not (member x (LS1 :〈〈staff〉〉 OR Void OR Void OR Void))])
Such view derivations can be substituted into any query posed on a global schema

in order to obtain an equivalent query distributed over the local schemas — this is the
GAV approach to global query processing, which is what the AutoMed implementation
currently supports. Section 4 will justify how this view definition can be simplified
further.

3.2 Generating LAV Views

LAV views are derived similarly: the pathway from a local schema to the global schema
is again retrieved from the metadata repository and is processed as above to derive
the view definitions, except that it is the local schema end of the pathway that is now
taken as the root of the tree. The derivation of LAV views is simpler because there is
now only a single pathway being processed, with no branching. Also, if a contract
transformation step is encountered, any occurrence of the contracted construct within
the current LAV view definitions is replaced by the upper-bound query accompanying
this transformation step (so that sound LAV views will be generated).

For example, to generate a LAV definition of LS1 : 〈〈male〉〉, we inspect the path-
way t1,..,t14,t35,..,t48. The transformation t12 deletes 〈〈male〉〉, and therefore we have an
intermediate view definition on US1:
LS1 :〈〈male〉〉 :- [x | (x, ‘M’)← US1 :〈〈staff, sex〉〉]

Then 〈〈staff, sex〉〉 construct is deleted by t46, which substitutes(x, y)← 〈〈staff, sex〉〉
with (x, y)← 〈〈person, sex〉〉; member x 〈〈staff〉〉, and the 〈〈staff〉〉 construct in this query
is deleted by t40 giving a final LAV rule:
LS1 :〈〈male〉〉 :-

[x | (x, ‘M’)← GS :〈〈person, sex〉〉; member x [x | (x, y)← GS :〈〈person, dname〉〉]]

3.3 Generating GLAV Views

First, it should be noted that GLAV view definitions will include all the LAV view
definitions, and all the GAV view definitions where the body of the rule is a query that
matches the conditions required for the GLAV query processing system in use (which in
[10] would be queries over a single source). In addition, we inspect now all the add and
extend transformations of the pathway that would be ignored by LAV view generation,
and for each one use the query to form the head of a new GLAV rule.

For example, in LS4 → US4, the query in t22 gives a new view rule head:
[(x, y) | (x, z) ← LS4 : 〈〈dept, cname〉〉; (z, y) ← LS4 : 〈〈college, uname〉〉] which is de-
fined by 〈〈dept, uname〉〉 at this stage. We then use our standard algorithm on construct
〈〈dept, uname〉〉, detect that it is deleted in t31, and hence replace it with the query from
t31 to result in the GLAV rule:
[(x, y) | (x, z)← LS4 :〈〈dept, cname〉〉; (z, y)← LS4 :〈〈college, uname〉〉] :-

[(x, z) | GS :〈〈dept, cmname〉〉; (z, y)← GS :〈〈campus, uname〉〉]

Note however that the BAV integration would still hold if LS4 were fragmented,
with campus and departments held on separate sources, whereas GLAV would cease to
be valid in this situation.

4 Logical Optimisation of the Generated Views

The view definitions generated by the process described above can be simplified by a
process of logical optimisation, where redundant parts of the query are removed. This
saves later work for the query optimiser, when these definitions are substituted into
specific global queries for query processing. It also generates views that are similar to
the views that would have been specified directly in a GAV, LAV or GLAV framework.

4.1 The OR Operator and Void

The Void value represents a construct that is unobtainable from a data source. We thus
define e OR Void = Void OR e = e for any IQL expression e. Applying this simplifica-
tion to the GAV view definition derived in Section 3.1 results in:
GS :〈〈person, sex〉〉 :-

([(x, ‘M’) | x← LS1 :〈〈male〉〉] ++ [(x, ‘F’) | x← LS1 :〈〈female〉〉]))
++ ([(x, y) | (x, y)← LS3 :〈〈student, sex〉〉; not (member x (LS1 :〈〈staff〉〉))])

It may be the case that two data sources supply information for a single schema
construct. For example, the global schema attribute 〈〈university, uname〉〉 has the GAV
view definition:
GS :〈〈university, uname〉〉 :-LS2 :〈〈university, uname〉〉 OR LS4 :〈〈university, uname〉〉
which expresses the fact that either LS2 or LS4 can be used to extract information about
university names. This leads to several possibilities for operational semantics that may
be used for the OR operator:

1. ident semantics would choose one of the expressions to evaluate, since the in-
tegration rules specify that they are the same. This may be defined by the rule
e1 OR e2 = e1 = e2.

2. intersect semantics would determine that a value should be returned only if it is
present in all data sources, defined by e1 OR e2 = intersect e1 e2.

3. append semantics would determine that all values in all data sources should be
returned, defined by e1 OR e2 = e1 ++ e2.

4. union semantics would determine that one copy of a value should be returned if
present in any data source, defined by e1 OR e2 = distinct (e1 ++ e2).

Option (1) is that which should be used if it is known that the data sources obey the
semantics specified by the data integration rules i.e. that their extents are identical and
there are no distributed data integrity violations. In this circumstance, the OR operator
may also be used during distributed data integrity checking, where both expressions are
evaluated, and the results compared to determine if the data sources contain consistent
data.

Options (2)–(4) provide different mechanisms for handling situations where the data
sources are possibly inconsistent, and thus may not share information that they should

share. Option (3) provides a result that may be used to derive Options (2) and (4), and
therefore is the default semantics provided by the AutoMed’s view generation algo-
rithm. Note also that Option (4) gives the same result as Option (1) if the data sources
are identical.

4.2 Other IQL Operators

The AutoMed intermediate query language IQL supports several primitive operators
for manipulating lists. The list append operator, ++, concatenates two lists together.
The distinct operator removes duplicates from a list. The monus operator −− sub-
tracts each instance of the second list from the first. For example, [1, 2, 3, 2, 4] −−
[4, 4, 2, 1] = [3, 2]. The fold operator applies a given function f to each element of
a list and then ‘folds’ a binary operator op into the resulting values, and is defined as
follows:

fold f op e [] = e

fold f op e [x] = f x

fold f op e (b1 ++ b2) = (fold f op e b1) op (fold f op e b2)
Other IQL list manipulation operators may be defined using fold together with the

usual set of built-in operators and also the support of lambda abstractions. For exam-
ple, the IQL functions sum and count are equivalent to the SQL SUM and COUNT
aggregation functions and are defined respectively as sum = fold (id) (+) 0 and
count = fold (lambda x.1) (+) 0.

The function flatmap applies a list-valued function f to each member of a list b

and is defined as flatmap f b = fold f (++) [] b. flatmap can in turn be used to
define selection, projection, join and, more generally, the comprehension syntax used
in the view definitions of the previous section. For example, the list comprehension
[x | x← 〈〈student〉〉; not (member x 〈〈staff〉〉)] translates to:

flatmap (lambda x.if (not (member x 〈〈staff〉〉)) then [x] else []) 〈〈student〉〉
Optimisations for fold apply to all the operators defined in terms of it. Regarding

the view definitions generated from BAV pathways there are two particular optimisa-
tions that can be applied to them. First, any instances of fold applied to Void can be
simplied by treating Void as identical to the empty bag, so that fold f op e Void = e

for any f, op, e. Second, due to the step-wise specification of our schema transfor-
mations, loop fusion may be applicable. This replaces two successive iterations over a
collection by one iteration provided the operators in question satisfy certain algebraic
properties. A simple instance of loop fusion is the standard relational query optimisation
πA(πB(R)) = πA,B(R). Loop fusion does not arise in the schema integration example
of Section 2.1 but consider the following fragment of an AutoMed pathway. This first
joins two schemes 〈〈R, a〉〉 and 〈〈R, b〉〉, creating an intermediate relation 〈〈I〉〉, and then
projects onto the a and b attributes, creating a relation 〈〈V 〉〉, and finally deletes 〈〈I〉〉:

addRel(〈〈I〉〉, [(x, y, z) | (x, y)← 〈〈R, a〉〉; (x, z)← 〈〈R, b〉〉])
addRel(〈〈V 〉〉, [(y, z) | (x, y, z)← 〈〈I〉〉])
deleteRel(〈〈I〉〉, [(x, y, z) | (x, y)← 〈〈R, a〉〉; (x, z)← 〈〈R, b〉〉])

The view definition generated for 〈〈V 〉〉 would be
[(y, z) | (x, y, z)← [(x, y, z) | (x, y)← 〈〈R, a〉〉; (x, z)← 〈〈R, b〉〉]])

and the generator (x, y, z) ← in the outer comprehension can be fused with the head

expression of the inner comprehension, giving:
[(y, z) | (x, y)← 〈〈R, a〉〉; (x, z)← 〈〈R, b〉〉]

There are a range of other standard algebraic optimisations that could be performed
on the view definitions e.g. pushing down selections and projections. However, these
kinds of optimisations will also be applied later, when a specific global query is refor-
mulated by substituting into it the view definitions. Further optimisations and rewrites
will be applied at this stage e.g. to bring constructs from the same local schemas to-
gether into sub-queries which can be posed entirely on one local schema and it is these
sub-queries (appropriately translated) that will be sent to local data sources for evalua-
tion.

We finally note that, although IQL is list-based, if the ordering of elements within
lists is ignored then its operators are faithful to the expected bag semantics. Moreover,
use of the distinct operator can be used to obtain set semantics as needed. We refer
the reader to [17, 6] for more details of IQL and for references to work on fold-based
functional query languages and optimisation techniques for such languages.

5 Validating and Optimising Pathways

One important feature of the AutoMed approach is that once a set of schemas have
been joined in a network of pathways, data and queries may be translated or migrated
between any pair of schemas in the network. Such networks may be complex to analyse,
so we need to support automated validation that a network is well-formed. We also need
to support automated optimisation of the pathways between schemas, since they may
contain redundant transformations.

To support such validation and optimisation of pathways, we have developed the
Transformation Manipulation Language (TML) [20, 21], which represents each trans-
formation in a form suited to analysis of the schema constructs that are created, deleted
or are required to be present for the transformation to be correct. Our definitions below
require two functions sc and rc. Given a query q on schema S containing n number of
constructs, sc determines all schema constructs that must exist in S if the query is valid,
rc determines all schema constructs in S referencing the constructs in q. For the IQL
language constructs used in our earlier examples, sc and rc are defined as:

sc(〈〈r〉〉) = 〈〈r〉〉
sc(〈〈r, a〉〉) = {〈〈r〉〉, 〈〈r, a〉〉}

sc([q1, . . . , qn]) = sc(q1) ∪ . . . ∪ sc(qn)
sc(q1 ++ q2) = sc(q1) ∪ sc(q2)

sc([q | q1, . . . , qn]) = sc(q) ∪ sc(q1) ∪ . . . ∪ sc(qn)
rc(〈〈r〉〉) =

⋃
1≤i≤nci(ci ∈ S ∧ 〈〈r〉〉 ∈ sc(ci))

Note that as a shorthand, we will write the pair of queries ql, qu in extend or con-
tract as just q, with the semantics in such cases that sc(ql, qu) = sc(ql) ∪ sc(qu). The
TML formalises each transformation ti of schema Si into schema Si+1 as having four
conditions a+

i , b−i , c+

i , d−i :

– The positive precondition a+

i is the set of constructs that ti implies must be present
in Si. It comprises those constructs that are present in the query of the transforma-
tion (given by sc(q)) together with any constructs implied as being present by the
construct c:

ti ∈ {add(c, q), extend(c, q)} → a+

i = (sc(c)− c) ∪ sc(q)
ti ∈ {delete(c, q), contract(c, q), id(c, c′)} → a+

i = sc(c) ∪ sc(q)
ti = rename(c, c′)→ a+

i = rc(c)
– The negative precondition b−i is the set of constructs that ti implies must not be

present in Si. It comprises those constructs which the transformation will add to
the schema, and thus must not already be present:
ti ∈ {add(c, q), extend(c, q), id(c′, c)} → b−i = c
ti ∈ {delete(c, q), contract(c, q)} → b−i = ∅
ti = rename(c, c′)→ b−i = {c/c′}rc(c)

– The positive postcondition c+

i is the set of constructs that ti implies must be present
in Si+1, and is derived in the same way as a+

i (i.e. the positive precondition of the
ti):
ti ∈ {add(c, q), extend(c, q), id(c′, c)} → c+

i = sc(c) ∪ sc(q)
ti ∈ {delete(c, q), contract(c, q)} → c+

i = (sc(c)− c) ∪ sc(q)
ti = rename(c, c′)→ c+

i = {c/c′}rc(c)
– The negative postcondition d−

i is the set of constructs that ti implies must not be
present in Si+1, and is derived in the same way as b−i :
ti ∈ {delete(c, q), contract(c, q), id(c, c′)} → d−i = c,
ti ∈ {add(c, q), extend(c, q)} → d−

i = ∅
ti = rename(c, c′)→ d−i = rc(c)

Below we show how the compounded transformation t1 and the primitive transfor-
mation t6 are represented in the TML.

t1.1 : [∅, {〈〈student〉〉}, {〈〈student〉〉}, ∅]
t1.2 : [∅, {〈〈student, id〉〉}, {〈〈student〉〉, 〈〈student, id〉〉}, ∅]
t1.3 : [∅, {〈〈student, id〉〉}, {〈〈student〉〉, 〈〈student, sex〉〉}, ∅]
t1.4 : [∅, {〈〈student, id〉〉}, {〈〈student〉〉, 〈〈student, dname〉〉}, ∅]
t6 : [{〈〈staff〉〉, 〈〈staff, dname〉〉}, {〈〈dept〉〉}, {〈〈dept〉〉, 〈〈staff〉〉, 〈〈staff, dname〉〉}, ∅]

5.1 Well-formed Transformation Pathways

A pathway T from schema Sm to Sn is said to be well-formed if for each transforma-
tion step ti : Si → Si+1 within it:

– The only difference between the schema constructs in Si+1 and Si is those con-
structs specifically changed by transformation ti, implying that Si+1 = (Si∪c+

i)−
d−i and Si = (Si+1 ∪ a+

i)− b−i
– The constructs required by ti are in the schemas, implying that a+

i ⊆ Si, b−i ∩Si =
∅, c+

i ⊆ Si+1 and d−i ∩ Si+1 = ∅

The above definition leads to the recursive definition of a well-formed pathway, wf ,
given below. The first rule applies each transformation step in turn, and the second rule
ensures that the schema that results from applying all the transformation steps is equal
to the schema at the end of the pathway (equal both in terms of the schema constructs
found in each schema and the extent of the schemas). Note that any implementation

may use these rules in two ways. Firstly, given a schema Sm representing a data source,
and pathway P , a new data source schema Sn and its extent can be derived. Secondly,
if Sn exists as a data source already, a check can be made to verify that P correctly
derives its schema and extent from that of Sm.

wf(Sm, Sn, [tm, tm+1, . . . , tn−1])← a+
m ⊆ Sm ∧ b−m ∩ Sm = ∅ ∧

wf((Sm ∪ c+
m)− d−m, Sn, [tm+1, . . . , tn−1])

wf(Sm, Sn, [])← Sm = Sn ∧Ext(Sm) = Ext(Sn)

5.2 Reordering of Transformations

Certain transformations may be performed in any order, whilst others must be per-
formed in a specific order. For example, in LS1 → US1, t11 must be performed before
t12, since the attribute 〈〈male, id〉〉must be deleted before the 〈〈male〉〉 relation is deleted.
However the sub-pathway t11,t12 could be performed before or after the sub-pathway
t13,t14 since it does not matter which of the 〈〈male〉〉 or 〈〈female〉〉 relations is deleted
first.

In the TML, this intuition is expressed by stating that transformations may be
swapped provided the pathway remains well-formed. This may be verified by inspect-
ing the conditions of each transformation. In particular, a pair of transformations ti,ti+1

may be reordered to ti+1,ti provided:

1. ti does not add a construct required by ti+1, and ti+1 does not add a construct
required by ti, i.e. (c+

i − a+

i) ∩ a+

i+1
= ∅ and (a+

i+1
− c+

i+1
) ∩ c+

i = ∅
2. ti does not delete a construct required not to be present by ti+1, and ti+1 does not

delete a construct required not to be present by ti, i.e. d+

i ∩ b+

i+1
= ∅

3. if ti is preceded by ti−1, the preconditions of ti+1 do not conflict with the postcon-
ditions of ti−1, i.e. c+

i−1
∩ b−i+1

= ∅ and d−
i−1
∩ a+

i+1
= ∅

4. if ti+1 is followd by ti+2, the preconditions of ti+2 do not conflict with the postcon-
ditions of ti, i.e. c+

i ∩ b−i+2
= ∅ and d−

i ∩ a+

i+2
= ∅

We can now formalise the two examples given above from LS1 → US1. For t11,t12,
(1) is broken, and hence they may not be swapped. The changing of t11,t12,t13,t14 to
t13,t14,t11,t12 may be performed by iteratively swapping pairs of transformations. Con-
sidering first t12,t13, we find neither rule is broken, and they may be reordered to t13,t12.
Then t12,t14 breaks neither rule, and may be reordered to t14,t12. This leaves a sub-
pathway t11,t13,t14,t12, and a similar argument allows t11 swap with t13 and then t14, to
give the sub-pathway t13,t14,t11,t12.

5.3 Redundant anad Partially Redundant Transformations

Two transformations tx and ty in a well-formed pathway T are redundant if T may
be reordered such that tx and ty become consecutive within it, and T remains well-
formed if they are then removed. Such redundant transformations will occur if a source
schema evolves to model information in the same way as the global schema when
previously it modelled the information in a different way. For example, suppose LS1

is evolved by transformations t49,t50,t51,t52,t53, textually identical to transformations
t10,t11,t12,t13,t14, to model the gender of staff as a single sex attribute in a new version

of the schema LS′
1
. By reversing these transformation steps we can derive the pathway

from the new to the old schema LS′
1
→ LS1:

Example 5 Pathway LS′
1
→ LS1

t53 addRel(〈〈female〉〉, [x | (x, ‘F’)← 〈〈staff, sex〉〉])
t52 addAtt(〈〈female, id〉〉, [(x, x) | x← 〈〈female〉〉])
t51 addRel(〈〈male〉〉, [x | (x, ‘M’)← 〈〈staff, sex〉〉])
t50 addAtt(〈〈male, id〉〉, [(x, x) | x← 〈〈male〉〉])
t49 deleteAtt(〈〈staff, sex〉〉, [(x, ‘M’) | x← 〈〈male〉〉] ++ [(x, ‘F’) | x← 〈〈female〉〉])

If we inspect the entire path LS′
1
→ US1, consisting of LS′

1
→ LS1 followed by

LS1 → US1, it may be reordered to contain the sub-pathway:
t51 addRel(〈〈male〉〉, [x | (x, ‘M’)← 〈〈staff, sex〉〉])
t50 addAtt(〈〈male, id〉〉, [(x, x) | x← 〈〈male〉〉])
t49 deleteAtt(〈〈staff, sex〉〉, [(x, ‘M’) | x← 〈〈male〉〉] ++ [(x, ‘F’) | x← 〈〈female〉〉])
t10 addAtt(〈〈staff, sex〉〉, [(x, ‘M’) | x← 〈〈male〉〉] ++ [(x, ‘F’) | x← 〈〈female〉〉])
t11 deleteAtt(〈〈male, id〉〉, [(x, x) | x← 〈〈male〉〉])
t12 deleteRel(〈〈male〉〉, [x | (x, ‘M’)← 〈〈staff, sex〉〉])

Clearly t49,t10 forms a redundant pair, because we are adding and deleting the same
construct with the same extent since the query is the same. Once this has been performed
t50,t11 may be removed for the same reason, and then t51,t12. Once all other redundant
pairs have been removed, LS′

1
→ US1 would comprise of just t1–t9.

Using the TML, we can identify redundant transformations as satisfying:
(a+

x = c+
y) ∧ (b−x = d−y) ∧ (c+

x = a+
y) ∧ (d−x = b−y) ∧ Ext(c+

x ⊕ a+
x) = Ext(c+

y ⊕ a+
y)

where (x ⊕ y) = (x − y) ∪ (y − x), and thus serves to find all the constructs being
added or deleted by the pair of transformations. In practice, this rule means that any
pair of transformations which add/extend and then delete/contract (in either order) the
same construct are redundant, providing the query can be demonstrated to result in the
same extent.

Two transformations tx and ty in a well-formed pathway T are partially redundant
if T may be reordered to make tx and ty consecutive, and T remains well-formed if they
are then replaced by a single transformation txy.

The pathway LS1 → LS2 has a pair of such partially redundant transformations,
since it can be reordered to obtain the sub-pathway:
t7 addAtt(〈〈dept, dname〉〉, [(x, x) | x← 〈〈dept〉〉])
t18 renameAtt(〈〈dept, dname〉〉, 〈〈dept, deptname〉〉)

This may be replaced by the new transformation given below, which leaves a fully
optimised pathway LS1 → LS2.
t54 addAtt(〈〈dept, deptname〉〉, [(x, x) | x← 〈〈dept〉〉])

Using the TML, we can identify partially redundant transformations as satisfying
the following rules, where⊕ indicates the exclusive-or operator:

((a+
x = c+

y) ∧ a+
x 6= ∅ ⊕ (b−x = d−y) ∧ b−x 6= ∅ ∧ d−x ∩ b−y = ∅ ∧ d−x 6= ∅ ∧ b−y 6= ∅

The simplifications for removing partially redundant and fully redundant transfor-
mations are summarised in the table below. The table shows what simplifications may
be applied where a pair of transformations is found to operate on the same construct
c. NWF denotes ‘not well-founded’ and [] denotes the removal of the pair. The table
would remain correct if extend were to replace add, contract replace delete, and id

replace rename. Further details of redundant and partially redundant transformations
may be found in [20, 21].

ty
add(c,q) delete(c,q) rename(c,c’)

add(c,q) NWF [] add(c’,q)
tx delete(c,q) [] NWF NWF

rename(c’,c) NWF delete(c’,q) []
rename(c”,c) NWF delete(c”,q) rename(c”,c’)

6 Concluding Remarks

In this paper we have described view generation and view optimisation in the Au-
toMed heterogeneous database integration framework. We have shown how the Au-
toMed schema pathways and views generated from them are amenable to considerable
simplification, resulting in view definitions that look much like the views that would
have been specified directly in a GAV, LAV or GLAV framework.

Since BAV integration is based on sequences of primitive schema transformations,
it could be argued that data integration using it is more complex than with GAV, LAV or
GLAV. However, the integration process can be greatly simplified by specifying well-
known schema equivalences as higher-level composite transformations. We gave such
an example, extendTable, in Section 2.1 above, and further examples are given in [15].
Moreover, we are working on techniques for semi-automatically generating transfor-
mation pathways to convert a source schema expressed in one modelling language into
an equivalent target schema expressed in another modelling language, based on well
known schema equivalences. We are also investigating schema matching techniques to
automatically or semi-automatically integrate two specific schemas.

Finally, it should be noted that BAV is well-suited to peer-to-peer data integration
(see [16]) since it lacks the directionality inherent in LAV, GAV and GLAV, all of which
are tied to the concept of there being a global schema which may not always be the case
in peer-to-peer environments.

References

1. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos. AutoMed: A
BAV data integration system for heterogeneous data sources. In Proc. CAiSE2004, 2004.

2. P. Buneman et al. Comprehension syntax. SIGMOD Record, 23(1):87–96, 1994.
3. D. Calvanese, E. Damagio, G. De Giacomo, M. Lenzerini, and R. Rosati. Semantic data

integration in P2P systems. In Proc. DBISP2P, Berlin, Germany, 2003.
4. S.S. Chawathe et al. The TSIMMIS project: Integration of heterogeneous information

sources. In Proc. 10th Meeting of the Information Processing Society of Japan, pages 7–
18, October 1994.

5. M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration. In Proc.16th
National Conf. on AI, pages 67–73. AAAI Press, 1999.

6. E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL Queries and Migrating Data
in the AutoMed toolkit. Technical Report No. 20, AutoMed, 2003.

7. M. Lenzerini. Data integration: A theorectical perspective. In Proc. PODS02, pages 247–
258, 2002.

8. A.Y. Levy, A.O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using views. In
Proc. PODS’95, pages 95–104. ACM Press, May 1995.

9. A.Y. Levy, A. Rajamaran, and J.Ordille. Querying heterogeneous information sources using
source description. In Proc. VLDB’96, pages 252–262, 1996.

10. J. Madhavan and A.Y. Halevy. Composing mappings among data sources. In Proc. 29th
Conference on VLDB, pages 572–583, 2003.

11. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML queries on heterogeneous
data sources. In Proc. VLDB’01, pages 241–250, 2001.

12. P.J. McBrien and A. Poulovassilis. Automatic migration and wrapping of database appli-
cations — a schema transformation approach. In Proc. ER’99, LNCS 1728, pages 96–113,
1999.

13. P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In
Proc. CAiSE’99, LNCS 1626, pages 333–348, 1999.

14. P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database architec-
tures, a schema transformation approach. In Proc. CAiSE’02, LNCS 2348, pages 484–499,
2002.

15. P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema transformation
rules. In Proc. ICDE’03, 2003.

16. P.J. McBrien and A. Poulovassilis. Defining peer-to-peer data integration using both as view
rules. In Proc. DBISP2P, Berlin, Germany, 2003.

17. A. Poulovassilis. The AutoMed Intermediate Query Language. Technical report, AutoMed
Project, 2001.

18. M.T. Roth and P. Schwarz. Don’t scrap it, wrap it! A wrapper architecture for data sources.
In Proc. VLDB’97, pages 266–275, Athens, Greece, 1997.

19. M. Templeton, H.Henley, E.Maros, and D.J. Van Buer. InterViso: Dealing with the complex-
ity of federated database access. VLDB Journal, 4(2):287–317, 1995.

20. N. Tong. Database schema transformation optimisation techniques for the AutoMed system.
Technical report, AutoMed Project, 2002.

21. N. Tong. Database schema transformation optimisation techniques for the AutoMed system.
In Proc. BNCOD’03, volume 2712 of LNCS, pages 157–171. Springer, 2003.

