
Component Coordination in Middleware Systems

�full paper�

Matthias Radestock and Susan Eisenbach

Department of Computing

Imperial College of Science� Technology and Medicine

��� Queen�s Gate� London SW� �BZ� United Kingdom

Phone� �		 ��� 
�	 ���	� Fax� �		 ��� 
�� ���	

Email� fM
Radestock�S
Eisenbachg�doc
ic
ac
uk

March �
� ����

Abstract

Con�guration and coordination are central issues in the design and implementation of

middleware systems and are one of the reasons why building such systems is more di�cult

and complex than constructing stand�alone sequential programs� Through con�guration�

the structure of the system is established � which elements it contains� where they are

located and how they are interconnected� Coordination is concerned with the interaction

of the various components� when an interaction takes place� which parties are involved�

what protocols are followed� Its purpose is to coordinate the behaviour of the various

components in a way that meets the overall system speci�cation� The open and adaptive

nature of middleware systems makes the task of con�guration and coordination partic�

ularly challenging� We propose a model that can operate in such an environment and

enables the dynamic integration and coordination of components through observation of

their behaviour�

Keywords� Coordination� Adaptive Open Distributed Systems� Novel Paradigms

�



� Introduction

We can view a distributed system as a collection of distributed components that interact with
each other� The concerns of any distributed system� including middleware systems� can be

separated into four parts�

� The communication part de�nes how components communicate with each other�

� The computation part de�nes the implementation of the behaviour of individual compo�
nents� It thus determines what is being communicated�

� The con�guration part de�nes the interaction structure� or con�guration� It states which
components exist in the system and which components can communicate with each

other� as well as the method of communication� Basically it is a description of where
information comes from and where it is sent to�

� The coordination part de�nes patterns of interaction� ie� it determines when certain
communications take place�

Inter�part dependencies yield a layered structure �cf� Fig� ��� From a software engineering

viewpoint lower layers need not� and should not� know about the higher layers� As far as the
lower layers are concerned the upper layers need not even exist� Each of the layers could have
its own model� language and implementation �ie� support in a distributed system platform��
This clear separation of concerns is extremely bene�cial� enabling a high degree of reuse and

easier maintenance�

��� Dynamic Con�guration and Coordination

The interaction structure in middleware systems often changes dynamically� new components

are created� existing components are destroyed� connections between components are estab�
lished and broken up� Such dynamic con�guration activities are derived from the functional
speci�cation of the system which may state� for instance� that a new member can join a video
conference after receiving an invitation� These activities thus need to be triggered by the

components in the system themselves� and so the con�guration layer needs to be supported
by the distributed system platform during the entire life�time of the system in order to enable
dynamic access to its functionality�

Coordination speci�es patterns of interaction� Such a pattern may� for instance� be that
component A can only send message X to component B after component C has sent message
Y to component D� Coordination requires con�guration � The patterns of interaction need
to be speci�ed before the parties of interaction� which is precisely the task performed by

con�guration� We can make a distinction between static and dynamic coordination� In the
former case� the interaction patterns are �xed throughout the life�time of a system� In the
latter case� interaction patterns are altered dynamically as part of satisfying the application
requirements� ie� the changes to the interaction structure and patterns are ultimately triggered

by computational components� The coordination layer must exist during the entire life�time
of the system� A mechanism is required that enables the interaction with the computation
layer�

	



When is something communicated?

Where is something communicated to/from?

What is communicated?

How is something communicated?

oordination

onfiguration

omputation

ommunication

C

C

C

C

Figure �� The Four Concerns in Distributed Systems

��� Adaptive Systems

A dynamic coordinationmodel allows us to specify systems where all possible dynamic changes
to the interaction structure and patterns are known at compile time and are triggered by appli�

cation components� However� this is insu
cient in many large distributed systems� especially

middleware systems� Such systems are typically long�lived� often running for days and in
some cases even years� They require interactive management� both human and automated

agents need to be able to recon�gure the system while it is running� Furthermore they need
to be able to alter the speci�cation of the coordination� con�guration and computation layers
in order to make permanent changes to the overall system behaviour� An example would be

a video�conferencing system where some new hardware� say a projection screen� is added to

the system during a conference� The components representing the screen need to be added to
the system�s computation layer� Then the con�guration layer needs to be modi�ed to forward
all data of the conferencing communication to that component� Finally we need to alter the

coordination layer to ensure that the new component interacts with the rest of the system in
the desired manner�

These so�called adaptive systems or evolving systems are capable of accommodating changes
that were not anticipated during the original system development� This is in contrast to static

and dynamic systems� Both of these can contain interactive user interfaces or can interact
with external components� but such interaction and the resulting changes need to be imple�
mented as part of the system functionality� the system functionality itself cannot be altered�
Adaptive systems create considerable demands on the capabilities of a middleware architec�

tures and the use of re�ection�MWY
�� GK
�� as a means of supporting these advanced
requirements has been advocated in recent research�RE
�a� BP
���

��� Open Systems

A universal model for con�guration and coordination has to be suitable for operating within
the context of open systems� This means that it has to be easy to integrate it into existing

�



distributed system platforms and it needs to enable con�guration and coordination of existing
components without requiring any alterations to them� The model needs to function across
heterogeneous systems that may be based on a variety of programming paradigms� languages
and platforms� Not only should it be possible to control the con�guration and coordination

of components in a heterogeneous system� but it must also be possible to control it from the
inside of the various platforms that make up the system � if con�guration and coordination
are part of application requirements� then they need to be controllable from potentially any

part of the application�

In an open system little is known of the components� implementations and� furthermore�
it may be impossible to alter them� Thus for con�guration and coordination to operate in a
truly open setting and enable the dynamic integration of components� they must not depend

on any knowledge of component behaviour� They certainly should not rely on any behaviour
speci�cations� because in general it is impossible to ascertain whether components actually
meet them� and hence system safety and security could be compromised� Coordinating com�
ponents without relying on any explicit behaviour speci�cation is crucial when it comes to

middleware systems� In such systems it is important to perform integration with a minimum
impact on existing components� Typically� integration is achieved by embedding calls to some
special communications API that enable interaction with other system components via the

middleware infrastructure� The impact on the existing application in terms of code changes
is usually minimal and introducing coordination should not increase this�

��� Related Research

The issues of con�guration and coordination have received growing attention from the re�
search community� and� as a result� several models� languages and implementations have
been proposed and executed� Distributed System standards such as CORBA�MZ
�� Pop
���

DCE�Sch
�� and RM�ODP�BS
��� and their implementations� address the issue of con�g�

uration by introducing a brokering mechanism which matches requests by components for
particular services with components providing these services� With this basic building block
in place� most con�guration issues can be addressed� However� coordination is not addressed
at all and left entirely to the programmer of the components�

Formalisms� such as Gamma�BM
�� and languages such as Linda�Gel��� Ban
�� have
emerged� However� they are not aimed at integration with existing systems or operation
in an open environment� Furthermore� only limited facilities exist for re�using coordination

patterns� and coordination is typically embedded in application code rather than being sepa�
rated� Research in software architecture�GS
�� PW
	� GP
�� RE
�b�� by contrast� has placed
considerable emphasis on layer separation� However� the distinct role of coordination has only
been recognised recently� Consequently several systems have emerged that address coordina�

tion issues� usually as extensions to existing systems� Examples of this are ToolBus�BK
��
�an extension to the PolyLith software bus�Pur
���� ConCoord�Hol
�� and Midas�Pry
��
are extension of Darwin�MEK
��� ActorSpace�CA
�� is an extension of an actor language
and Manifold�Arb
�� is based on a model where processes communicate anonymously via

streams� Common to all approaches is the lack of openness � coordination in these systems
relies on particular features that are unique to the speci�c system� Dynamic integration of
existing components is usually possible� but only for components that have been designed�

implemented and compiled for the particular system used� Dynamic change is supported� but
systems cannot adapt to changes in the requirements that go beyond the scope of the original

�



speci�cation� Furthermore� the above coordination mechanisms only provide limited means
of abstraction� ie� the construction of patterns of coordination and their reuse� This is mainly
due to the use of separate coordination languages that lack expressiveness�

��� Outline of Our Approach

Our aim is to enable coordination in adaptive and open distributed systems� such as mid�
dleware systems� Further to that� we want to be able to integrate components on the level

of source code� object code and running code� including existing and running legacy appli�

cations� The key element in our solution is a mechanism that enables the observation and
coercion of dynamic component behaviour through the interception of messages� The �rst
part of this paper is devoted to the description of this so�called traps model� Traps employ

a sophisticated type system for specifying message patterns and rules for de�ning actions
to be taken when messages have been intercepted� The patterns and rules can be altered
dynamically and thus traps represent a dynamic con�guration and coordination layer� Since
traps operate without having any knowledge of the behaviour of the components� they do

not depend on any component interface�behaviour speci�cation� Traps integrate the con�g�
uration and coordination layers into the computation layer without jeopardising the bene�ts
of clear separation� Thus coordination can be designed and implemented using the same
techniques deployed in the design and implementation of the application components� As a

result� coordination code can be reused in the same way as application code� The approach
also enables meta coordination� the coordination of coordination itself� In the �nal part of
this paper we use the well�known example of the Dining Philosophers to illustrate how our

model can deal with various� increasingly complex� coordination tasks�

� Traps � A New Model For Con�guration and Coordination

In order to facilitate con�guration and coordination in an evolving heterogeneous distributed
environment� we need to devise a suitable model that has very few demands on the system
architecture and is thus easily incorporated into both existing and new systems� The �rst step

in devising our coordination model is to take a slightly di�erent view of the message�based
communication model� This new view is illustrated in Figure 	� When a component A sends
a message to another component B� the message gets stored in a location of the so�called
message space� based on its type� From that location it is then forwarded to the receiving

component� It should be noted that this transformation of our view of the communication
model happens on the conceptual level� unlike� for instance� in Linda where the tuple�space
model is exposed to the programmer� The new view is transparent to the components involved�

as far as component A is concerned it is still sending a message to component B� and as far
as component B is concerned it is still receiving a message from component A� Conceptually
though we can view things di�erently� Component B is noti�ed of an �interesting� activity� a
message that component A is trying to send to component B�

��� Message Types

A message between two components consists of

� the originator� ie� the component that sent the message�

�



A B
msg

msgmsg a msg b Message Space

Communicating Components

Figure 	� Communication via Message Spaces

� the recipient� ie� the component that is the intended recipient of the message�

� the content� ie� the data elements� and

� the context� ie� additional information required by the communication and coordination
layers� such as time stamps and request ids�

The type of a message encompasses those elements that are visible to the programmer� ie� ev�
erything apart from the context information� It can therefore be de�ned as

MessageType � Component � Component � Component�

ie� the product type of components �originator� � components �recipients� and sequences of
components �message content�� Locations in a message space correspond to message types�

hence messages sharing the same originator� recipient and content are stored in the same

location� Some examples of message types �in pseudo�code� are�

device��handler�� an empty message from device to handler
device��handler�handle�data���� a message from device to handler with three

components as content� handle� data and ���

Note that we do not attach any special signi�cance to the �rst element of the message content�
In many object�oriented systems this will be the name of a method to be invoked� however�
our model operates on a more abstract level and can therefore be oblivious to this special

semantics��

It is important that message types are de�ned in terms of components and not component
types� because coordination operates on the level of individual components rather than their
types� Consequently the domain of message types can be very large �even in�nite� and thus�
plainly� locations in a message space cannot be real entities requiring system resources� They�

along with the notion of message spaces� are just concepts�

�The �� in our notation should not be confused with the �� method invocation construct found in languages
like C��� In our notation the element to the left of the arrow is the sender� the element to the right is the
recipient and the arguments follow�

�



��� Message Patterns

A message pattern de�nes a subset of the domain of message types� Its domain can therefore
be de�ned as the power�set of message types� ie�

MessagePattern � P�MessageType�

Message patterns are used by the programmer to identify interesting messages� ie� messages
requiring special treatment by the coordination layer� They typically use the type system
of the underlying programming language� However� it should be noted that the type system
ought to be sophisticated� with the ability to dynamically construct types from instances and

not just other types� If these capabilities are not present then a separate type system must
be introduced to complement the existing one� Examples of some more sophisticated message
patterns are�

device��handler�handle�data����

Device��Handler��special�handle�Any��	String

Device��handler���Any�Device��Device�transfer�

Any��Any���Any

The �rst pattern covers exactly one message� The second pattern covers all messages from
components of type Device to components of type Handler or the symbolic component special�
with at least two arguments� the �rst of which must be the component handle� the second of

which can be of any type� and the remaining arguments being of a type other than String��

The third pattern covers all messages from components of type Device to the component

handler with any number of arguments of any type� and messages between components of
type Device with transfer as an argument� The fourth pattern covers all messages�

As can be seen from these examples� a sophisticated type system enables the concise
speci�cation of very complex patterns� Traps do not inherently depend on such type systems

though� as there are other places in the trap system where such complex decisions can be

made� However� the more expressive the type system is� the less computationally expensive

the introduction of traps becomes�

��� Translation Rules

The new way of viewing the message�based communication model is obviously of not much
use if all that happens is essentially the same as before� locations in the message space just
serve as �trampolines� that bounce messages to their target components� What we require for
coordination is some means of altering the �ow of messages� We achieve this by installing

translation rules at locations in the message space� These translate the messages at the
location into other messages� thus relocating them to di�erent places in the message space
and e�ectively intercepting the message�

The translation rule in Fig� � translates the original message �from component A to com�

ponent B� into a message that has component C as the target� The new message could be seen
as having precisely the meaning presented earlier as an alternative perspective� ie� component
C is noti�ed of the attempt by component A to send a particular message to component B�

Component C thus conceptually resides in the coordination layer� It could coordinate all the

�Upper case identi�ers in our pseudo�code denote types� lower case identi�ers denote variables holding
component references and identi�ers pre�xed with a single quote denote symbols�

�



A CB

msg msg’ Message Space

translation rule

Communicating Components

Figure �� Message Relocation by Translation Rules

activities between component A and B if translation rules were speci�ed that relocate any
messages exchanged between the two components� Thereby C could act as a simple forwarder�
or could accomplish arbitrarily complex coordination tasks� such as protocol translation and

enforcement� interaction with other coordinators etc�
In our model� translation rules always translate messages into new messages where the

originator is a so�called message wrapper of the original message� ie� an encapsulating com�
ponent for the original message�� Further� the recipient and content of the new message does

not depend on the original message� A translation rule thus simply speci�es a new recipient
and content�

TranslationRule � Component � Component�

Such translation rules can be de�ned completely independently of the underlying program�
ming language since they do not perform any computation whatsoever� This keeps the seman�

tics simple� o�ers opportunities for easy and e
cient implementation� and enables deployment
in a heterogeneous language�platform setting�

When a translation rule is applied to a message the resulting message contains the message
wrapper of the original message as the originator� The recipient and content are supplied by

the translation rule� For instance� the translation rule

�logger��io
event��

applied to the message

device��handler�handle�data����

will result in the message

�device��handler�handle�data�������logger��io
event�

�The purpose of message wrappers is to expose messages as components in the programming language� even
though messages themselves may not be components�

�In our pseudo�code we de�ne translation rules in the same way as message types� except that the originator
and following �� are not present�

�



where the square brackets denote the message wrapper of the original message�
Messages resulting from the application of translation rules get stored at their appropriate

locations in the message space� Hence they can be subject to further translation� Eventually
the messages cannot be translated any further and are sent to their intended recipient� Since

translation rules always generate messages containing an encapsulation of the original mes�
sage� the elements of the original message� such as the original recipient� can all be used in
the further decision process by coordination components�

��� De�ning Traps

Placing a translation rule on a location in the message space is the equivalent of �setting
a trap�� hence the name of this model� Instead of being bounced back and delivered to

the intended recipient� a trapped message undergoes translation� The same translation rule
often applies to many locations in the message space� As we noted before� the number of
locations in the message space can be very large or even in�nite� It is therefore impossible to

install translation rules individually at locations in the message space� Hence a trap de�nition
consists of two components�

� a message pattern� using the described type system for messages� this de�nes a subset

of the domain for messages� ie� locations in the message space� Messages in the subset
are caught by the trap�

� a translation rule� using a new recipient and content� this translates it into a new
message�

Thus� traps can be formally characterised as

Trap � MessagePattern� TranslationRule

� MessagePattern� Component � Component�

In our pseudo�code we de�ne traps using a �� operator� For instance� the trap

Device��Handler�handle��Any �� logger��io
event�

will trap all messages sent from devices to handlers with handle as the �rst argument plus
any number of further arguments of any type� It will translate these messages to messages to

the component logger� with the symbolic component �io�event as the �rst argument and the
encapsulated original message as the originator� Note that message patterns are part of the
type system and message wrappers can be matched against them� This enables the speci�ca�
tion of traps that further translate a message that has already undergone some translation�

For instance� messages generated by the above trap would match a pattern

�Device��Handler�handle��Any���logger��io
event��

��� Matching Policies

When a message is matched against the message patterns of the currently installed traps� it
is possible that it matches more than one pattern� In dealing with this situation� we have a

choice between two matching policies�

�� Message translation is performed by all traps whose message pattern matches a message�






	� Message translation is performed by the traps whose message pattern matches the mes�
sage most speci�cally� compared to the other patterns�

Both policies are useful in certain contexts� The �rst policy would be employed in cases where

several independent coordinators are interested in a message and therefore install traps to
intercept it� For instance the two traps

Device��Handler�handle��Any �� logger��io
event�

Device��Handler���Any �� forwarder��io
event�

could be installed completely independently� one in order to log the message� one in order to
forward it� In that case� we would actually want all coordinators to deal with the message in
this case� instead of a selection being performed based on the most speci�c message pattern

�which in the above case would select the �rst trap in preference to the second�� The second
policy is typically employed in cases where a coordinator installs several traps� more general
traps for dealing with �normal� messages and speci�c traps for dealing with �exceptional�
messages requiring special coordination� e�g�

Device��Handler���Any �� forwarder��io
event�

Device��Handler�handle��Any �� forwarder��handle
io
event�

In order to deal with these two cases we therefore implement the following policy�

Traps with the same new recipient form a trap group� When a message matches
the message patterns of several traps in the group� then only the translation rule
of the trap with the most speci�c matching message pattern is invoked� Mes�
sage translation is performed by all trap groups that contain traps with patterns

matching the message�

Trap groups de�ne the boundaries of pattern�based selection and ensure that a message is not
translated into two messages with the same recipient� Thus in the above example a message

device��handler�handle�data����

would be translated into two messages�

�device��handler�handle�data�������logger��io
event�

�device��handler�handle�data�������forwarder��handle
io
event�

which is exactly what we would expect�
There is a special case involving the pattern�based selection � when several patterns

match a message but neither of them is more speci�c than any of the others� In the simplest
case this will occur when two patterns are identical� The policy we employ in this case is to
select the most recently installed trap� thus ensuring a deterministic outcome of the selection
process�

��� Coordination Protocol

In our model� coordination is accomplished by encoding the coordination logic in components

that receive intercepted messages as an input� The principal decision to be made by the
components is when �if at all� a message should be dispatched� ie� delivered to its �nal
destination� In order to make that decision� the coordination components need to interact

��



[msg]

dispatch(msg)

dispatch/delaydispatch/delay

replyreply

A B

vote_request vote_request

Figure �� Coordination Protocol

with each other� This causes a software engineering problem because the coordination logic

is often a composite entity whose elements are unaware of each other and hence cannot
engage in any interaction� The composite nature of the coordination logic is a result of the
composite nature of applications � they are built out of components which each have their
own coordination logic and are �glued together� by yet more coordination logic� To overcome

this problem we have to add a coordination protocol to our model�
When a message is intercepted by traps� it is eventually translated into a set of messages

that cannot be further translated� Then the following happens �cf� Fig� ���

�� The message wrapper of the original message initiates a round of voting� Messages in

the message set are interpreted as requests for votes and dispatched�

	� The message wrapper waits until the same number of votes as requested have been

received� Participants in a vote submit their vote through sending a dispatch or delay
message� They expect to receive a reply to that message� containing the outcome of the

round of voting�

�� If all participants voted for dispatch then the outcome is dispatch� The original message
is dispatched� ie� sent on its way to its destination�

�� If one participant voted for delay then the outcome is delay� Nothing is done�

�� The reply messages with the vote result are sent to the participants�

This two�phase protocol ensures that the original message is only dispatched if consensus has
been reached by all participants� even though participants do not know about each other�

The protocol makes no assumptions on how components deal with messages� e�g� components
could process messages in parallel or in an order di�erent to the order of arrival� Introducing
the coordination protocol does not require any changes to the semantics� The �rst step in

the protocol is captured by the semantics already since the application of translation rules
always results in messages that have the message wrapper of the original message as an
originator� Thus they always appear to be sent by the message wrapper anyway� The rest

��



of the protocol is implemented by the message wrapper and the participating components in
terms of ordinary component�to�component interactions�

A new round of voting can be initiated at any time by delivering a vote message to the
message wrapper� The message will be ignored by the message wrapper if the message has

been dispatched already� and it will be delayed if the current round of voting hasn�t been
completed yet� thus ensuring that rounds of voting on a message occur in a sequence� A
new round of voting is initiated by participants when they �change their minds� regarding

the vote for a message� Such a change of mind is only signi�cant if it was from delay to

dispatch� since that is the only case where it may cause a previously delayed message to be
dispatched or discarded� The message wrapper expects as many vote messages as there were
delay votes in the previous round of voting� Only then will it actually trigger a new round

of voting by dispatching all the messages in the message set �which it needs to remember�
again� Participants need to remember those messages that they voted to delay in order to
be able to initiate new rounds of voting� However� they are allowed to forget messages they
voted to dispatch since they will be requested to vote on them again anyway� if necessary�

��� Protocol Extensions

The requests for votes sent to participants are just ordinary messages and hence they can be
subject to delays� Participants receiving the same requests may receive them in a di�erent
order� This can lead to deadlock if participants wait for the results of a vote before proceeding�

Other scenarios can lead to livelock or lack of fairness� In order to free the programmer from
having to deal with these issues we need to extend the above protocol� The protocol also
requires extension in order to enable the replacing of intercepted messages in the context
of con�guration� ensure ordered message delivery and provide easy coordination of request�

reply�style interactions� The details of these extensions are beyond the scope of this paper�
The complexities of the coordination protocol can be hidden from the programmer by

splitting coordination components into two separate components� a protocol wrapper and

a logic wrapper� Programmers need only to be concerned with the logic wrapper which�
typically� implements some kind of state machine� All that the component has to do is vote
on a message and perform a state transition if the vote succeeds� The protocol wrapper� which
can be automatically created by the system� controls the message �ow to and from the logic

wrapper and implements the coordination protocol� It takes care of message ordering and
re�voting and isolates the programmer from any changes that may be made to the protocol
over time�

� An Example

We shall now demonstrate how con�guration and coordination in applications can be accom�
plished using traps� using the well�known example of the �Dining Philosophers�� Philosophers

sit around a table with food� There is a chopstick between every two philosophers� Philoso�
phers require both their left and right chopstick in order to eat� A chopstick can only be
held by one philosopher at a time� It needs to be ensured that philosophers don�t starve
� we need to prevent situations of deadlock and livelock and ensure fairness� Philosophers

and chopsticks are to be treated as �given� types of components� ie� we do not have access to
their source code and hence cannot modify it� Neither do we have any detailed knowledge of
the components� behaviour� Thus coordinating philosophers and chopsticks in the context of

�	



PhilPhil

Phil Phil

’right

’l
ef

t

’r
ig

ht

’left

’right

’l
ef

t

’r
ig

ht

’left

Figure �� Con�guring the Dining Philosophers

Dining Philosophers is very similar to the integration�reuse of �legacy� components in a het�
erogeneous distributed system� such as a middleware system� We investigate three variations
of the example� with increasing degree of complexity and show how the additional complexity

is primarily accommodated in an incremental fashion without the need for rewriting existing
code�

��� Con�guration

Initially� we deal with static con�guration only� ie� we create a certain number of philosophers
and chopsticks and establish a con�guration where philosophers are assigned chopsticks in
the manner speci�ed� We are assuming that coordination is performed by the philosophers
and chopsticks themselves� which therefore have to be aware of the context they are being

used in� When philosophers and chopsticks are created� the required coordinators are set
up as well� After all coordination logic is in place� the philosophers are told to start eating�
A philosopher attempts to pick up a chopstick by sending a pick message to the symbolic

components �left or �right� It drops a chopstick by sending a drop message� We assign
a coordinator to each philosopher� which installs traps that intercept the pick and drop

messages of a philosopher and translate them into messages to the coordinator �cf� Fig� ���
Upon receipt of one of these messages the coordinator replaces the original pick or drop

message with a get or put message to the actual left or right chopstick�

��



Phil Phil

PhilPhil

’l
ef

t

’r
ig

ht

’left

’right

’l
ef

t

’r
ig

ht

’left

’right

Figure �� Coordinating the Dining Philosophers

��� Coordination

To facilitate reuse� philosophers and chopsticks should be completely unaware of the context
in which they are being used� speci�cally philosophers should not require knowledge that

picking up a chopstick requires coordination with other philosophers� Philosophers should
be able to attempt picking up a chopstick at any time and dropping a previously picked up
chopstick at any time� They can attempt to pick up both chopsticks at the same time or

one after the other or pick one up and then drop it again� The only assumptions we make�
for simplicity�s sake� is that philosophers will not pick up a chopstick they currently hold�
and will not drop a chopstick they do not currently hold� The result of this liberal approach
is that a great variety of component implementations can ful�l the roles of philosophers or

chopsticks� Thus there is a wide scope for reusing existing components in that role without
the need for modi�cation�

We coordinate the dining philosophers by ensuring that when a philosopher attempts to
pick up the �rst chopstick� the request is delayed until both chopsticks are available� When the

�rst chopstick is being picked up by a philosopher all requests by other philosophers to pick
up the complimentary chopstick are delayed� This policy ensures both freedom of deadlock
and livelock as well as guaranteeing that chopsticks are only picked up by one philosopher at

a time�
In order to implement the coordination policy� coordinators create an auxiliary component�

��



Traps are installed that intercept messages to the philosopher�s chopsticks �cf� Fig� ��� One
set of traps intercepts the messages sent by the philosopher�s coordinator� another set has
a message pattern which matches messages to the chopsticks from any component� Since
this pattern is less speci�c than the one of the �rst set of traps� these traps will intercept

all messages sent to the chopsticks by other coordinators� The intercepted messages are
submitted for voting to the auxiliary components� The auxiliary components implement a
state machine encapsulating the coordination policy by delaying get messages�

��� Dynamic Change

In the previous two variations of the Dining Philosophers� both philosopher and chopstick
components are created by the coordination code itself� So while the coordination logic has

no knowledge of the component implementations� it does have knowledge of component�s
existence� However� coordination is often required in settings where components are created
dynamically by existing code� We shall now demonstrate how this can be accomplished in
a variation of the Dining Philosophers example where the creation of philosophers happens

outside the coordination logic and is not controlled by it� To keep things simple� we assume
that philosophers will not attempt to pick up the second chopstick until they�ve successfully
picked up the �rst�

We modify the coordination logic to dynamically create a chopstick and the required

coordinators whenever a philosopher accesses a chopstick for the �rst time� We do this by

installing traps that intercept all pick or drop messages sent by philosopher components
to the symbolic �left and �right components� and forward them to a Table component�

which serves as a coordinator� Since the message pattern is less speci�c than the ones of the
traps installed by the individual coordinators� messages from philosophers will not be caught
in these traps once the philosophers� individual coordinators have been installed� Messages
caught by the generic traps are resubmitted once the necessary coordinators have been created�

thus ensuring that they get processed in the same way as if the coordinators had been in place
all along� We have to deal with a special case� Since coordinators require two chopsticks� we
need to wait until we have got two philosophers before creating any coordinators� We do this
by implementing a simple state machine on our Table coordinator�

New philosophers are placed at the �end� of the table� ie� next to the last philosopher� If
the new philosopher �rst requested the left chopstick then he is placed to the right of the last
philosopher and the new chopstick will be shared between himself and the last philosopher� If

the new philosopher �rst requested the right chopstick then he is placed to the left of the last
philosopher and the new chopstick is shared in the same way�� The coordinator of the last
philosopher needs to be noti�ed of the changed con�guration so that it can amend its existing
traps� We do this by sending it a setL or setR message� containing a reference to the new

chopstick� which causes all existing traps of the coordinator to be removed and new traps to
be installed� The resulting changes in the system con�guration are illustrated in Figure ��

Replacing a chopstick is not always safe� We cannot replace it while it is held by the
philosopher in question� We therefore amend the coordinator state machine to defer the setL

and setR message in certain states � whenever the chopstick in question is held by any
philosopher�� We further need to enforce atomicity of all changes in the trap con�guration

�In principle we could always seat the philosopher to the left �or right� of the last �or� for that matter� any
other� philosopher� We have chosen the described policy for reasons of symmetry�

�This simpli�cation allows us to leave the state machine essentially unchanged� We would have to extend

��



Phil PhilPhil

before

after

Phil Phil’l
ef

t

’r
ig

ht

’l
ef

t

’r
ig

ht

’l
ef

t

’r
ig

ht

’l
ef

t

’r
ig

ht

’l
ef

t

’r
ig

ht
Figure �� Introducing a new Philosopher

relating to the introduction of a new philosopher� This is important in order to provide the
new and old coordinators with a consistent view of the system state �ie� which chopsticks are

held by which philosophers�� Atomicity is ensured by making all activities part of a transaction
which is committed once all changes to the traps have been scheduled� thus causing all the
changes to take place at the same time� The trap transaction logic also causes messages
caught by �old� traps to be resubmitted �provided voting on them hasn�t been completed yet�

and thus being subjected to the new traps�

� Conclusions

The model of coordination presented in this paper enables the coordination of components
in open adaptive systems� independently from the underlying distributed system platforms�
Some recent advances in this direction can be found in the notions of synchronizers�FA
��

Fro
��� regulated coordination�MU
�� and programmable coordination media�DNO
��� Our
approach shares many of the initial motivations and there are also some similarities between

it if the constraint turned out to be too strict�

��



the concepts� For instance� the notion of a programmable coordination media is based on
intercepting messages in a very similar way to our traps� and underlying synchronizers is a
coordination protocol that is in many ways similar to ours� However� in our opinion these
models are still not su
ciently open and only have very limited support for system evolution

and the abstraction and reuse of coordination patterns in a truly open setting�
We can make several important observations on the model presented in this paper� Firstly�

the presence of coordinating components is transparent to the components in the computa�

tion layer that are being coordinated� Coordination can be imposed without changes to these

components by observing and coercing their visible behaviour� All that is required is the
ability to observe �and intercept� the messages emitted from components� Secondly� coordi�
nation will only take place where it is needed� Components are free to interact with each

other without the involvement of the coordination layer if the coordination layer hasn�t spec�
i�ed that such an involvement is required� by de�ning suitable traps� The safety and liveness
requirements of a system can be met using whatever information is available about the mes�
sages sent�expected by a component� it�s internal behaviour� protocols etc� This� somewhat

pragmatic� approach enables the integration of components implemented in a multitude of
languages and running on a multitude of systems�

Finally� we can observe that coordination in our model is performed by ordinary com�

ponents residing in the computation layer� This is a result of the re�ective nature of traps�
The only di�erence is in the role played by the components� Their speci�cation� design and
implementation can utilise the same tools� paradigms and languages� Hence the means of
abstraction and reuse apply to our coordination logic in the same way as they are applicable

to the application logic� For instance it doesn�t take much e�ort to abstract generic resource
allocation coordination patterns from our Dining Philosopher example� In addition to the
obvious software engineering advantages of implementing coordination logic in the same way

as application logic� we gain the ability to perform meta coordination� ie� coordinator com�
ponents themselves can be subject to coordination by other components� Thus� instead of
statically categorising components into those dealing with con�guration�coordination and
those dealing with computation� we have a dynamic relationship between components that is

a result of the role they play with respect to each other at a particular point in time� This
dynamic categorisation provides the means for implementing systems where coordination is
an integral part of the functionality� and hence complex interactions take place between the
coordination and computation layers�

Traps can easily be integrated into existing systems by modifying the communication layer�
Thus all existing application code remains una�ected and the model functions in a hetero�
geneous setting� enabling the coordination of existing components across system boundaries�

We have successfully implemented trap�based coordination in a heterogeneous setting con�
sisting of a distributed actor�based system and a CORBA system� Traps are distributed and
sometimes replicated between nodes in order to improve performance� The model has been
successfully used commercially by TECC Ltd in the design and implementation of several

middleware applications�TR
��� Our current research concentrates on establishing a formal
semantics for traps and their application in the de�nition of reusable coordination patterns�

��



� Acknowledgements

We gratefully acknowledge the advice and help provided by the Distributed Software Engi�
neering Research Section at the Imperial College Dept� of Computing and the members of the

Middleware Systems Group at TECC Ltd� as well as the �nancial support from the EPSRC
under grant ref� GR�K��	�	�

References

�Arb
�� F� Arbab� The IWIM model for coordination of concurrent activities� In
P� Ciancarini and C� Hankin� editors� Coordination Languages and Models� �st

Int� Conference� volume ���� of LNCS� Springer Verlag� April �

��

�Ban
�� M� Banville� Sonia� an adaption of Linda for coordination of activities in orga�
nizations� In P� Ciancarini and C� Hankin� editors� Coordination Languages and
Models� �st Int� Conference� volume ���� of LNCS� Springer Verlag� April �

��

�BK
�� J�A� Bergstra and P� Klint� The ToolBus coordination architecture� In P� Ciancarini

and C� Hankin� editors� Coordination Languages and Models� �st Int� Conference�
volume ���� of LNCS� Springer Verlag� April �

��

�BM
�� J��P� Banatre and D� Le Metayer� The Gamma model and its discipline of pro�
gramming� Science of Computer Programming� ��������� �

��

�BP
�� G� Blair and M� Papathomas� The case for re�ective middleware� Proc� of

the �rd Cabernet Plenary Workshop http
��www�newcastle�research�ec�org�

cabernet�workshops��rd
plenary�html � April �

��

�BS
�� G� Blair and J�B� Stefani� Open Distributed Processing and Multimedia� Addison
Wesley Longman� �

��

�CA
�� C�J� Callsen and G� Agha� Open heterogeneous computing in ActorSpace� Journal

of Parallel and Distributed Computing� pages 	�
����� �

��

�DNO
�� E� Denti� A� Natali� and A� Omicini� Programmable coordination media� In
D� Garlan and D� LeMetayer� editors� Coordination Languages and Models� �nd
Int� Conference� Springer Verlag� September �

��

�FA
�� S� Frolund and G� Agha� A language framework for multi�object coordination� In

ECOOP�	
 Proceedings� volume ��� of LNCS� Springer Verlag� �

��

�Fro
�� S� Frolund� Coordinating Distributed Objects� An Actor�Based Approach to Syn�
chronization� MIT Press� �

��

�Gel��� David Gelernter� Generative communication in Linda� ACM Transactions on
Programing Languages and Systems� ����������	� �
���

�GK
�� J� Des Rivieres G� Kiczales� D� Gureasko� The Art of the Metaobject Protocol� MIT

Press� �

��

��



�GP
�� D� Garlan and D� Perry� Software architecture� Practice� potential and pitfalls� In
Proc� of the ��th Int� Conf� on Software Engineering� May �

��

�GS
�� D� Garlan and M Shaw� An introduction to software architecture� In Advances
in Software Engineering and Knowledge Engineering� volume �� World Scienti�c
Publishing Co�� �

��

�Hol
�� A�A� Holzbacher� A software environment for concurrent coordinated program�
ming� In P� Ciancarini and C� Hankin� editors� Coordination Languages and Mod�

els� �st Int� Conference� volume ���� of LNCS� Springer Verlag� April �

��

�MEK
�� J� Magee� S� Eisenbach� and J� Kramer� System structuring� A convergence of

theory and practice� In K�P� Birman� F� Mattern� and A� Schiper� editors� Theory
and Practice in Distributed Systems� Proc� of the Dagstuhl Workshop� volume 
��
of LNCS� Springer Verlag� �

��

�MU
�� N� Minsky and V� Ungureanu� Regulated coordination in open distributed systems�
In D� Garlan and D� LeMetayer� editors� Coordination Languages and Models� �nd

Int� Conference� Springer Verlag� September �

��

�MWY
�� S� Matsuoka� T� Wanatabe� and A� Yonezawa� Hybrid group re�ective architecture

for object�oriented concurrent re�ective programming� In O� Nierstrasz� editor�
ECOOP�	� Proceedings� LNCS� Springer�Verlag� �

��

�MZ
�� T� Mowbray and R� Zahavi� The Essential CORBA� Using Systems Integration�
Using Distributed Objects� John Wiley � Sons� �

��

�Pop
�� A� Pope� The CORBA Reference Guide� Understanding the Common Object Re�
quest Broker Architecture� Addison�Wesley� �

��

�Pry
�� N� Pryce� A model of interaction in concurrent and distributed systems� In Second
International Workshop on Development and Evolution of Software Architectures
for Product Families� February �

��

�Pur
�� J�M� Purtilo� The POLYLITH software bus� ACM Transactions on Programming
Languages� �������������� January �

��

�PW
	� D�E� Perry and A�L� Wolf� Foundations for the study of software architectures�
ACM SIGSOFT Software Engineering Notes� ����������	� �

	�

�RE
�a� M� Radestock and S� Eisenbach� Agent�based con�guration management� In

Proc� of the 
th IFIP�IEEE Int�Workshop on Distributed Systems� Operation and
Management� �

��

�RE
�b� M� Radestock and S� Eisenbach� Formalizing system structure� In Proc� of the �th
Int�Workshop on Software Speci�cation and Design� pages 
������ IEEE Com�
puter Society Press� �

��

�Sch
�� A� Schill� editor� DCE � The OSF Distributed Computing Environment� Springer�
Verlag� October �

��

�TR
�� F� Taylor and M� Radestock� TECCware product de�nition� Technical report�
Trans Enterprise Computer Communications Ltd� �

�� http
��www�tecc�co�uk�

�



