Mean-field approximations for performance models with deterministic timeouts

Richard A. Hayden
Department of Computing, Imperial College London

Introduction
We show how popular techniques for analysing massively parallel stochastic systems, for instance mean-field [1] and fluid-analysis [2], can be extended directly to allow deterministically as well as exponentially timed transitions.

Deterministically-timed events
Ubiquitous in real-world computer and communication systems, for example:
- Timeouts in networking protocols;
- Impatient or re-queuing customers;
- Networks with fixed-length packets;
- Time to reset/reboot a server;
- Other isolated or predictable tasks which always take the same amount of time.

Analysing the underlying process
Generalised semi-Markov process (GSMP) [3], i.e. discrete state-space is non-Markovian since future evolution may depend on elapsed time for deterministically-timed transitions.
- General approaches require solution of multi-dimensional PDEs [4] or Fredholm equations [5];
- Number of equations grows proportionally to the state-space size — does not scale to systems with many interacting entities;
- Other approaches (e.g. [6]) impose very significant structural restrictions on the enabling of non-exponential transitions.

Alternatively, deterministic durations can be approximated by k-stage Efrang distributions. This is also often impractical since k must be large for an accurate result.

Mean-field approach
Let \(S = (x, y, z, u, v) \) be the discrete-state stochastic process counting the number of nodes in each state. For a state \(S = (x, y, z, u, v) \), the notation \(s_{x,y,z,u,v}^{-1} \) for \(x, y, z, u, v \), represents the state \((x - 1, y, z, u + 1, v) \). By considering what can happen in \([t, t+\delta t]\), we can show:

Other transients with nasty joint dependence on the past

Two problems: number of equations (state-space explosion) and intractable joint dependence on the past in the extra terms.

A solution: multiply each equation by node count and sum over all states to obtain equation for node-count expectations. Then apply usual mean-field approximation of delay-differential equations (DDEs).

Two problems: approximation and intractable joint dependence on the past.

DDE approx. (solid line) compared with actual means for \(N = 20, 50, 100 \) (dashed lines)

Conclusion & future work
- DDEs can be used for tractable mean-field analysis of systems with deterministic timeouts.
- Future work includes theoretical convergence results and error bounds.
- Also, possible extensions to higher-order moments (cf. [2]), reward measures (cf. [7]) and more general distributions.

References

Acknowledgements
The author is funded by EPSRC on the Analysis of Massively Parallel Stochastic Systems (AMPSYS) project (ref: EP/G035773/1).