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Abstract

A novel and more robust implementation is proposed for sequence estimation in uncertain environments
with additive non-Gaussian ambient noise and inter-symbol interference. This method is based on a deter-
ministic performance index which minimizes the effect of worst case disturbances on the estimation error.
The decoder has multiple H filters and is in the fashion of per-survivor processing with a Viterbi trellis for
decoding. There is a substantial performance improvement over maximum likelihood sequence estimation
as shown by simulation results obtained for joint channel estimation and symbol decoding in non-Gaussian

channels.

EDICS Category: COM-ESTI

I. INTRODUCTION

In many physical channels, such as urban and indoor radio channels and underwater acoustic channels,
the ambient noise is known to be non-Gaussian, due to man-made interference and natural noise as well, see
[1] and references therein. Hence there is an increased interest in demodulation techniques for non-Gaussian
Inter-Symbol Interference (ISI) channels [1], [2].

Equalization in ISI channels with additive Gaussian noise has been a well studied problem in the area of
communication [3]. [4] introduced a receiver structure, consisting of a linear causal transversal filter (called
the Whitened Matched Filter (WMF)), a symbol-rate sampler, and a recursive Viterbi algorithm, which is a
maximum-likelihood sequence estimator (MLSE) of the entire transmitted sequence. The Viterbi algorithm
requires the knowledge of the channel information and per-survivor processing (PSP) provides a zero-delay
adaptive channel estimator [5], [6]. A joint channel estimator and symbol detector based on multiple model
theory was developed for Gaussian channels in [7]. The Bit-Error-Rate (BER) performance of the Viterbi
and PSP algorithms for joint channel and sequence estimation depends on the channel model, decoding delay

and the noise distribution. Therefore an implementation based on the white Gaussian noise assumption will
H. Kulatunga*® and V. Kadirkamanathan are with the Dept. of Automatic Control and Systems Engineering, University

of Sheffield, Mappin Street, Sheffield, S1 3JD, UK (Tel: +44 114 222 5250, Fax: +44 114 222 5661 email: {cop0lthk*,
visakan }@sheffield.ac.uk).

September 24, 2005 DRAFT



suffer performance loss when the additive noise is non-Gaussian. Hence, it is of interest to develop robust
sequence estimation techniques for uncertain non-Gaussian environments, which is the subject of this paper.

Recently, [2] has used H* theory for the equalization problem. The novel idea proposed in this paper
is a Viterbi algorithm based on minimizing a worst-case deterministic cost with multiple H* filters for
channel estimation in the fashion of PSP. In this work a recursive deterministic performance index is derived
from a norm bounded transfer operator which minimizes the estimation error with respect to worst-case
measurement noise, driving noise and initialization error, effectively mitigating the impulsive noise based on

a min-max strategy.

II. SYSTEM MODEL

The received signal is passed through a WMF, sampled and input to the Viterbi decoder [4]. The discrete-

time signal at the input to the decoder is expressed as ,

K-1
yi= Y b+ v (1)
n=0

where {b;} is the information symbol sequence, T is the symbol period, {a:@}f;ol are the time-varying
coefficients of an equivalent discrete-time filter of K — 1, S-state time-varying inter-symbol interference
effects [3]. v; is the additive noise. The main assumptions made in this paper are,

Assumption 2.1 The channel impulse response f(t) has finite duration of length K symbol intervals.

Assumption 2.2 The WMF is W (z) = X%Z) F(z) where X (z) is a minimum-phase polynomial in z of degree
K with coefficients z,, and xg # 0.
Assumption 2.3 {b;} is a complex, zero-mean and uncorrelated wide-sense stationary (WSS) sequence, i.e.,

E(b;ib;) = 6(i — j) drawn from a signal constellation B of size S.

III. THE PROPOSED H*-BASED ROBUST ESTIMATION

The channel state information (CSI) is rarely known at the receiver. Denoting the channel coefficients at
(4) (4)

time instant i as x; = [y ,-..,%5_4]*, the coefficients are estimated based on the following state-space
model,
Xib1 = X+ Wy
i = hixi+v; (2)
s; = Lix;
where w; is a zero-mean random process, w; = [w(()i), .. .,w%ll]* and h; =1; = [b;,...,bi_k41]. Thus we

estimate an arbitrary linear combination, say 3;);, of channel coefficients given the received signal {y;} of an
ISI channel with non-Gaussian noise. Estimate of s; indirectly gives an estimate of the state x; similar to

the innovation approach of the Kalman Filter [8]. The estimation error is,

ei = 8 — lix; (3)



The worst-case performance measure is defined as,
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where the H? norm of a causal sequence {g;} is Zfil 9;9; and transfer operator J maps unknown distur-
bances {TLo~"/*x0, {Q; “/*w;}¥ |, {vi}V,} (where IIy, Q; are positive definite weighting matrices, a design
choice) to the estimated errors {e;}X;. The optimal estimate {;}XL,, of all possible estimates {3;,}X,,
should minimize the H* norm of 7, i.e.,

igf 1Tl = igfxo’wzgguem J <7} (5)
where ny% > 0 is a level of disturbance attenuation (a prescribed positive value) for i = 1, ..., N. The following

state-space model can be introduced to describe the estimation problem in (2),(3),

Xi+1 = X;it+WwW; (6)
. h, Ui
vi = ! X; + ! —z; = 0,;X; +Vv; (7)
54)i L; e

where v; = [V}, e}]*. The condition (5) can be related to a positivity of an indefinite-quadratic form Jy for
the sequence length N obtained by substituting (4) in (5). Because of the underlying state-space model the

resulting indefinite quadratic form can be written as,

* *y —1
X0 IK 0 0 H(] 0 0 IK 0 0 X0
JN(XO;W;Z) = w 0 Ign 0 0 Q 0 0 Ign 0 w >0
z Q r Iy 0 0 R Q ' I z

where Q € 2N, T € R2N*N are the observability map and the impulse response matrix, respectively

of the state-space model. I, € R*** is an identity matrix. z = [z},...,2z23]|", w = [w],...,wy]*, v =
[V],...,vn]*. Stationary point 7o of quadratic form Jn(7,z), where 7% = [x§,w*], is easily obtained by
partial differentiation w.r.t. 7, which gives,

In(10,2) = 2*R] 'z 9)

where 7 = 79 for sequence length N. R, is a coefficient matrix. However, in order to satisfy condition (8),

the minimum has to be positive for the estimates {3;;}1,, i.e. Jy(70,2) > 0.

A. Recursive Calculation of the Performance Measure
A partially equivalent Krein space model (corresponding with (2)) can be defined (partial as Krein space
variables are stochastic).
Xit1 = Xi+ W

z, = @iii+Vz~ (10)



Krein space values are made distinct with an overline. [8] has detailed Krein space state-space represen-
tation and development of inner product matrices which are equivalent to the coefficient matrices in the
deterministic quadratic form (derived from model (2) and described in (8)). A recursive formula, based on
innovations in an equivalent Krein space, which can recursively compute the state estimates, subject to the
positivity condition of Jn(79,2), is presented in detail in [8]. These recursions are none other than the H>
filter given in [9],[10].

From innovations in Krein space, the column vector z can be expressed in terms of innovations as z = La
where z; = (z;,Q;) (aj,aj)_l aj +a; and a = [af,...,aN]", innovations of the deterministic quantities
and (-,-) denotes an gramian matrix in stochastic Krein space. The minimum value of the quadratic form
(8) expressed in terms of the innovations is Jn(79,2) = a*R;'a, where R, = diag(R4,1- - Rq,n) and
coefficient matrix Ry ; = (@;,@;). Thus R, can be estimated recursively by Krein space projection of

innovations leading to the recursive computation of Jy (7o, z) as,
Ji(101i>2) = Ji—1(T0i-1,2) + O‘;R;}iai (11)

Therefore the condition for the existence of the H* estimator is

Ji(70)i,2) :é { Zy,a: } R, { ij } >0 (12)

oy ;)" and oy = yi — P;)i-1 and as; = $;); — 8;;1. From state-space model (10), Rq, ; =<

*

where a; = [ay ;,

0,%;,0,X; > + < 0;,V; > where X; = ij—ﬁj‘j_l. Block upper-lower triangular factorization of R,,; = LDU

leads to a simplified form of (12),

2

Z(yj = 915-10) (L + P h5) " (y; — g15-1)

j=1
1
+ (815 = 85) (v + 4P 4+ hihy) 1) (8 — 455) > 0 (13)
j=1

where 5;); = 8;|—1 +1;P;hi(I+h;P;h%) "' (y;—7;j—1). Therefore the simplest choice that satisfies condition
(13) would be,

8jli = 8jlj (14)

giving one possible level-v; filter. The performance measure at time instant 4 is,
i
Ji(10)i,2) = Z(yj —Jji—1) (I + thjh;)fl(yj —Jjj—1) (15)

=1
which is a unique minimum at stationary point g); for sequence length i and guarantees the existence
condition (13) of a certain level-y; H filter. §;;_1 = h;X;|;_1. X;j—1 = X;_1);—1 and X;_4|;_; is calculated

recursively using the Riccati H filter.



B. H®® Filtering

The discrete-time Riccati solution for the H® filter is given in [10], [9], and P; in (15) satisfies the Riccati

recursion,

Pii = Py+Q-Py w1 RIS (16)
J
10 b,
R., = Ll Pi[m 1 ; (17)
0 —’)/f lj

The adaptive H* filtering problem can have many solutions, each for a proper v¢ value. The v > 0 value

satisfies the condition,
P! +hih; — ;7151 > 0, V) (18)

If P; exists then one possible level-y; filter will be,

55 = L%
Rjivijrn = Xy + K1 (Y1 — hjaXjn) (19)
Xjt1 = Xy,
Kjs1 = Pjahj (I +hj Pjghi )™ (20)

Effectively, the states X, ; are estimated recursively (19),(20) with filters initialized with %g.

Jli
IV. DETERMINISTIC SEQUENCE ESTIMATION - PSP-H* ALGORITHM

The discrete-time linear filter model for ISI channels has SK~1 states, the state at any time is given by
the K — 1 most recent inputs, s; 2 (bi—1,---,bi—_k+1)- The output at any time instant is determined by
two successive states, y; = y(s;, s;+1)- Deterministic sequence estimation is defined as the choice of that
{b;}X, for which the minimum worst-case quadratic cost Jy(-) w.r.t. measurement and driving noise and
initialization errors, is minimized. To construct the recursive algorithm we use (15) from the previous section.
The prediction g;;_ at time instant 4 is determined by transition from state s; to s;11,i.e. §;i—1 = (54, 8i41)-

Then min-max cost for a particular sequence breaks up into sum of independent increments:
In(roin2) = D AJi(yi — §(si, 8i41)) (21)
i

where AJ;(+) is the cost increment at time instant ¢. The multiple mode representation [11], [7] is introduced
which can be used to expound the joint sequence decoder and estimator, and provides an alternative view

of the Viterbi trellis structure.

The state s; = (bi—1,...,bi_k+1) in the trellis diagram can be represented by a mode sequence denoted

as M[i]. One possible mode sequence M[i] = M, is written in short as M} and r € {1,...,S%~1}. State s;
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Fig. 1. Multiple Model Decoder Framework.

associated with mode sequence M/ can be expressed in terms of modes as,
M;(Sl) = (mji—lma v ’mji—K+1‘r)’ for r € {17 LR SK_l}' (22)

where the indices j;_,, can take values in the range 1 < j;_,, < S. Each symbol-mode association
{I_’ji—nmvmji—n,r}i_n,rzl represents a possible value of the transmitted symbol b; ,, € {b1,...,bs} and the
associated mode. For n = 1,..., K — 1 the sequence (mj,_, ,,.-.,Mj,_,, ) forms the rth possible symbol
sequence from time i — K + 1 to i — 1. Then {h,, Mi}S"," represents a possible value of the transmitted
symbol sequence (b;_1,...,b; r+1) € {h1,...,hgx-1} and the associated system mode. A state sequence

from state s; to s; is then denoted based on (22) as a sequence of modes,
M:(Sl, ey Sz) = (mji_l‘r, ... ,mjlm), fOI‘ re {1, ey Si_l}. (23)

B. Viterbi Decoder

Cost AJ;(-) (21) is associated with the transition from state s; to s;y1. We denote the partial sum from
; A —j— N C e

state s; to state s; as T[MJ (s, ..,5;)] = Soi_r AJi(yr — 9(k, 5k+1))- Then the deterministic minimum

worst-case cost (15) can be expressed in terms of partial costs as follows,

IN(Tojn-2) = Ji(10)i,2) + TIMN T (si41,- .-, sn41)] (24)
Let Mﬁfg},t(sl, ..., Si+1) be the mode sequence from time 1 to i that gives the least minimum worst-case cost
Ji(To1i,2) = T[M*(s1,...,8:+1)] among all allowable mode sequences starting from state s; and ending

with state s; 1 (i-e. M;t;t() is a survivor sequence which is ending at state s;11). Then, from the premise

of dynamic programming the initial segment J;(7o|;,2) = M*1(-) of any other sequence, passing through

Si+1, can be replaced with the segment Mit!

ropt (+) and obtain a sequence which minimizes the sequence cost

Ji(+) even further.



Now apply this argument to a finite state machine of length K — 1. The state s;11 = (b, ..., bi_k42) is
not known but it is one of a finite number of states s, ;, 1 <r < SK=1 of the trellis diagram representing
the finite state machine. That is the sj, ,th state at time-instant ¢ represents the Mﬁﬂg;,t(sl, ..., 8;)th mode
sequence at time-instant i. The latter segment of each of the mode sequences at each state has length K —2
and must be among the initial segment of SE~2 out of the SX~! mode sequences at states {s?}. Therefore
there are always S paths converging on each state and the path with the least cost (path metric) is the
survivor sequence Mt 1. (-). If Ji(7o;,2) = T[M ], (s1,. .., 8:41)] is the path metric at each state, then the

path metric is updated at time ¢ + 1 as,

1) For each of the S continuations from each of the SK~! survivors from time instant 4 compute
Jia () =TIMEL (51, sip)] + AJj L (igr — 0(sig1, 8i42)), forl=1,...,8. (25)

{AJ! ()} are called the branch metrics. The channel state estimates from the H filter associated with
the surviving path at state s7,, is used to calculate the branch matrix, AJL | (yiy1 — G(Sit1,Sit2)) =
hi+1§<§| ;» associated with each continuation from state s;y1. h;y; is not known and will take values
according to the mode sequence associated with each continuation. The channel state and variance for
each of these paths will be {x},,, =%}, P}, ; = P}, }.

2) For each of the states si,,, 1 <7 < SE=1 representing the transitions at time i + 1, compare the costs

of the S continuations terminating in each state and select the smallest as the corresponding survivor,

1Pt = min Jhq (M) (26)
Therefore J], | (7o[i41,2) = I'[ fgf,t(sl, sy Siga)] = Zl:_plt (M,;). The corresponding channel estimate and

Riccati recursion at each state will be (19),(16), initialized with {%;1; = fcéf:i‘i, P, = Pijf;ll}

The PSP-H* algorithm is given in Table I.

V. SIMULATIONS AND RESULTS

An illustration of the performance of the PSP-H* algorithm for jointly estimating the symbol sequence
and channel coefficients in the presence of severe inter-symbol interference (ISI) is obtained by Monte Carlo
(MC) simulation. Consider the discrete time-invariant wireless channel characteristics [0.227 0.460 0.688 0.460 0.227]
given in [3]. The additive noise v; in the received signal is impulsive, uncorrelated with the information
sequence {b;}, and modeled by a two-term Gaussian mixture model with probability density function (pdf)
of,

p(v) = (1= e)N(0,p7) + eN'(0, p7) (27)

where N(0, p?) represents the zero-mean Gaussian distribution function with variance p2. The simulations

show Bit-error rate (BER) performance versus Signal-to-noise ratio (SNR) where SNR is calculated by,

1
SNR=— 2
N znjllwnll

No=(1—€)ng + eong (28)



TABLE 1

PSP-H® FOR JOINT SYMBOL AND CHANNEL ESTIMATION IN IST CHANNELS WITH NON-(GAUSSIAN NOISE.

Initialized with xq,Po; For sequence length ¢ =1,..., N,
FORr=1:5K-1DO
Consider the paths from S number of previous states, s; = s{l to state s;4+1 =], 1 < r < §K-1
but sf’ (1: K —2)=s},,(2: K —1) therefore only S number of previous states are considered.
FOR!=1:5DO
hi =h,
iy =R Pl =P
957 s7) = ixpy
Calculate AJ}(y; — gj(s{l 1 8741))
JE= 0 (rojic1,2) + AJHys — 98y s741)) = TIME, o (s15000,80)] + ATHyi —9(sT 8744))
END

i opt ;
jort — mlm Jl! = JZ(TO\iaz) = J} Pt = F[M;fj;;t(sl, .. .,si+1)}
hlopt *
_ lopt X X lopt lcpt . _ opt * % -1 7 lcpt . L lcpt *
X =X Ky —hy o xg, ) PY= |1— [ h; I; ] R, 1_1 Pllia +Qis Li=h;
2
END
IF ¢ >= decoding delay D,
rmin = W7 (1o, 2)
‘Work back along the mode sequence Mit! (s1,...,8i4+1) associated with path ending at state

rmin ont

Sit1 = s;rli" and the ’symbol-mode’ association will indicate the transmitted symbol at time ¢ — D as
shown in Fig. 1 for zero-delay, D = 0.
END

where €, o are design parameters for the impulsive noise model and p2 = ng and p? = ong are the variances
of the two Gaussian distributions in (27). Considering an anti-podal (BPSK) transmission where S = 2, the
performance of the robust algorithm is compared with Recursive Least Squares (RLS) and Kalman filter
based PSP algorithms. The results in Figure 2 show that the robust version of the PSP algorithm has better
BER performance over the whole SNR range. At very low SNR noise dominates the received signal and all
filters exhibit similar BER, as the SNR improves the H* based PSP algorithm performs better than the
other methods. This is attributed to the fact that H* estimator is robust to non-Gaussian noise whereas
the convergence of the channel state estimates of the Kalman and RLS methods will be perturbed due to
impulsive noise. In the case of time-invariant channel with AWGN, Figure 3, the H* filter that considers
the worst-case scenario and the Kalman and RLS filters that expects noise to be Gaussian converge to a

constant channel gain.

VI. CONCLUSION

An adaptive H® filtering algorithm is developed which is presented from a multiple model viewpoint to
equalize wireless ISI channels. Essentially, it is a parallel filtering algorithm with Viterbi decoding and the

performance index minimizes the effect of worst-case disturbances by minimizing a deterministic quadratic
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function. The proposed robust sequence estimator outperforms, at low SNR, the maximum likelihood based

sequence estimators in non-Gaussian noise.
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