Computing Publications

Publications Home » Distributed knowledge representat...

Distributed knowledge representation in neural-symbolic learning systems: a case study

Artur dAvila Garcez, Luis Lamb, Krysia Broda, Dov Gabbay

Conference or Workshop Paper
Florida artificial intelligence research society conference; FLAIRS-03
ISBN 1-5773-5177-0

Neural-symbolic integration concerns the integration of symbolic and connectionist systems. Distributed knowledge representation is traditionally seen under a purely symbolic perspective. In this paper, we show how neural networks can represent symbolic distributed knowledge, acting as multi-agent systems with learning capability (a key feature of neural networks). We then apply our approach to the well-known muddy children puzzle, a problem used as a testbed for distributed knowledge representation formalisms. Finally, we sketch a full solution to this problem by extending our approach to deal with knowledge evolution over time.

BibTEX file for the publication built & maintained by Ashok Argent-Katwala.