Computing Publications

Publications Home » Evaluating and Optimising Models ...

Evaluating and Optimising Models of Network Growth

Richard Clegg, Raul Landa, Uli Harder, Miguel Rio

Technical Report
Computer Science > Networking and Internet Architecture - arXiv.org
April, 2009
arxiv.org
Abstract

This paper presents a statistically sound method for measuring the accuracy with which a probabilistic model reflects the growth of a network, and a method for optimising parameters in such a model. The technique is data-driven, and can be used for the modeling and simulation of any kind of evolving network.

The overall framework, a Framework for Evolving Topology Analysis (FETA), is tested on data sets collected from the Internet AS-level topology, social networking websites and a co-authorship network. Statistical models of the growth of these networks are produced and tested using a likelihood-based method. The models are then used to generate artificial topologies with the same statistical properties as the originals. This work can be used to predict future growth patterns for a known network, or to generate artificial models of graph topology evolution for simulation purposes. Particular application examples include strategic network planning, user profiling in social networks or infrastructure deployment in managed overlay-based services.

Keywords
AESOP
PDF of full publication (301 kilobytes)
(need help viewing PDF files?)
BibTEX file for the publication
N.B.
Conditions for downloading publications from this site.
 

pubs.doc.ic.ac.uk: built & maintained by Ashok Argent-Katwala.