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Abstract

Probabilistic model checking is a technique for verifying whether a model such
as a Markov chain satisfies a probabilistic, behavioral property – e.g. “with prob-
ability at least0.999, a device will be elected leader.” Such properties are express-
ible in probabilistic temporal logics, e.g. PCTL, and efficient algorithms exist for
checking whether these formulae are true or false on finite-state models.

Alas, these algorithms don’t supply diagnostic information for why a proba-
bilistic property does or does not hold in a given model. We provide here complete
and rigorous foundations for such diagnostics in the setting of countable labeled
Markov chains and PCTL. For each model and PCTL formula, we define a game
between a Verifier and a Refuter that is won by Verifier if the formula holds in
the model, and won by Refuter if it doesn’t hold. Games are wonby exactly one
player, through monotone strategies that encode the diagnostic information for
truth and falsity (respectively). These games are infinite with Büchi type accep-
tance conditions where simpler fairness conditions are shown not be to sufficient.
Verifier can always force finite plays for certain PCTL formulae, suggesting the
existence of finite-state abstractions of models that satisfy such formulae.
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1. Introduction

Countable labeled Markov chains [12, 3] are an important class of stochastic
processes for the modeling of probabilistic systems. Probabilistic Computation
Tree Logic (PCTL) [7] is a probabilistic temporal logic whose formulaeφ can
express practically relevant specifications, e.g. “with probability at least0.999, a
device will be elected leader” – a requirement within a telecommunications stan-
dard such as [1] – can be written as[tt U someLeaderElected]≥0.999 in PCTL. A
denotational semantics[|φ|]M over labeled Markov chainsM then renders truth or
falsity of φ, where[|φ|]M is the set of states inM at whichφ is true.

Efficient algorithms exist that compute, over a finite-statelabeled Markov
chain, the set of states that satisfy a given PCTL formula (e.g. the ones imple-
mented in the probabilistic model checker PRISM [14]). A specifier, however,
may need more information than just knowledge of that set. The specifier may
want to understand why a particular state or set of states of interest is in that set,
and any such information may be seen as evidence or diagnostics of truth. Equally,
the specifier may be interested in comprehending why a particular state is not in
that set, and any such information would now be evidence for falsity.

We here mean to provide such a mathematical formalism: a precise operational
account of truth and falsity of PCTL formulae, expressed in amanner that is ex-
plorable step by step by humans and machines alike. The formalism we suggest
is that of Hintikka games [9], played between two players Verifier and Refuter,
and their notion of strategy for these players. The appeal ofthese games is that
truth amounts to the existence of a winning strategy for Verifier, whereas falsity is
captured by the existence of a winning strategy for Refuter.Such Hintikka games
for PCTL over labeled Markov chains are meant to establish firm foundations on
which questions about the existence and computation of finitary evidence of truth
and falsity of PCTL formulae can be phrased, studied, and evaluated.

We now sketch the idea behind Hintikka games for first-order logic. A Tarskian
notion of truth,|=, is a formally defined predicate between models and formulae
of first-order logic and “propertyφ is true in modelM” is defined as “predicate
M |= φ holds”. For example, ifM is the set of natural numbers{0, 1, . . .} andφ
is¬∃x ((x ∗ x < x+ 1) ∧ (x > 1)), thenM |= φ holds since all natural numbers
are either at most1 or their square is bigger than their successor number.
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For modelM and formulaφ, a Hintikka gameG(M,φ) involves two players,
Verifier V (who wants to prove thatM satisfiesφ) and RefuterR (who wants to
prove thatM does not satisfyφ). GameG(M,φ) has as configurations triples
of form 〈M [~x 7→ ~a], ψ, C〉 where[~x 7→ ~a] binds a set of variablesxi to natural
numbersai, C is either RefuterR or Verifier V, ψ is eitherφ or a strict sub-formula
of φ, and〈M,φ, V〉 is the initial configuration – saying thatV claims thatφ is
true inM , and generates a game tree whose paths are plays – finite sequences of
configurations. Below, we write!C for the player other thanC, i.e. !V = R and
!R = V.

For sake of illustration, consider the game for our example.The formulaφ is a
negation, so the initial configuration has〈M,ψ0, R〉 as sole next configuration for
ψ0 being∃x ((x ∗ x < x + 1) ∧ (x > 1)). (Thus, we just swap the player – ifC
claims¬ψ then!C claimsψ – and remove the negation symbol when processing a
negation.) At configuration〈M,ψ0, R〉, the formula is an existential one and so the
player that claims its truth (hereR) can choose a natural number, say5, and bind it
to x, resulting in the next configuration〈M [x 7→ 5], ψ1, R〉, whereψ1 is (x ∗ x <
x+ 1)∧ (x > 1). (In particular, configuration〈M,ψ0, R〉 has infinitely many next
configurations, one for each natural numbera bound tox.) That formulaψ1 is a
conjunction claimed to be true byR, and so his opponentV can choose a conjunct.

If V chooses conjunctx > 1, the next configuration is〈M [x 7→ 5], x > 1, R〉.
Formulax > 1 is atomic andx is bound to5 so we simply evaluate this to5 > 1,
which is true. Refuter has won this play. But ifV choosesx ∗ x < x + 1, the
next configuration is〈M [x 7→ 5], x ∗ x < x+ 1, R〉 and now Verifier wins since
5 ∗ 5 = 25 6< 6 = 5 + 1. Finally, if playerV always choosesx ∗ x < x + 1
whenevera is greater than1, and choosesx > 1 whenevera is at most1, he wins
all plays in the game tree ofG(M,φ), affirming thatφ is true inM .

To summarize, existential quantifiers in a configuration〈M, ∃xψ, C〉 require
binding its quantified variablex to an elementa of the model, chosen by player!C,
with next configuration〈M [x 7→ a], ψ, C〉. Negation in a configuration〈M,¬ψ, C〉
determines a swap of players and the removal of the negation with next configura-
tion 〈M,ψ, !C〉. Conjunction in a configuration〈M,ψ1 ∧ ψ2, C〉 means that player
!C chooses a conjunctψi for the next configuration〈M,ψi, C〉. Atomic configura-
tions〈M, δ, C〉 are simply evaluated, using the binding information of the model:
playerC wins if δ is true inM , otherwise player!C wins.

Strategies for both players are objects that allow them to make necessary
choices for determining continuation plays. For example, Verifier needs to make
choices for existential quantifiers in configurations of form 〈M, ∃xψ, V〉, and for
conjunctions in configurations of form〈M,ψ1 ∧ ψ2, R〉. A strategyσ is winning
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for a player if all plays played according to the choices offered by strategyσ are
won by that player. Since all plays for first-order logic are finite, classical game
theory guarantees that gamesG(M,φ) are determined: exactly one of the two
players has a winning strategy for that game.

It is well known that in ordinary set theory ZF the assumptionof the Axiom
of Choice is equivalent to that

(Correspondence)“Verifier wins gameG(M,φ) if, and only if, pred-
icateM |= φ holds”.

holds. So one gets an operational and “small-step” account of truth in first-order
logic from the Axiom of Choice.

We here also rely on the Axiom of Choice in proving(Correspondence)in our
setting of PCTL and countable labeled Markov chains. This dependency appears
to vanish for finite-state models and for PCTL formulae whosethreshold types and
controlling player satisfy simple consistency conditionsdeveloped in this paper.
The latter is of interest sinceany PCTL formula can be rewritten with the help
of small perturbations of thresholds that won’t diminish their practical value to
specifiers but that establishes, in some cases, said consistency conditions. For ex-
ample, formulae[tt U someLeaderElected]≥0.999 and [tt U someLeaderElected]>p

with p = 0.999 − 1−15 have different threshold types (≥ versus>) but the latter
formula may in practice be considered a valid substitute forthe former one.

Our Hintikka games for PCTL retain the above idea: Verifier and Refuter
are adversarial players, and both have to make choices of either sub-formulae
or of structural elements – which for PCTL turn out to besub-distributionsthat
approximate transition distributions in labeled Markov chains.

Outline of paper.In Section 2, we review the familiar denotational semanticsof
PCTL for countable labeled Markov chains as models, and prove a finite-state
approximation lemma for (Strong) Until formulae with non-strict thresholds under
that semantics. In Section 3, the game semantics for PCTL over countable labeled
Markov chains is being defined and these games are shown to be determined and
to capture precisely the denotational semantics of PCTL. InSection 4, we discuss
what structural properties one may assume in winning strategies for our games.
A discussion of the relevance of our results to finding finite representations of
winning strategies is contained in Section 5. In Section 6, we discuss related
work, and we conclude in Section 7.
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φ,ψ ::= PCTL formulae
q Atom
¬φ Negation
φ ∧ ψ Conjunction
[α]⊲⊳p Path Probability

α ::= Path formulae
Xφ Next
φU≤kψ Until
φW ≤kψ Weak Until

Figure 1: Syntax of PCTL, whereq ∈ AP, k ∈ N∪ {∞}, p ∈ [0, 1], and⊲⊳ ∈ {<,≤, >,≥}

2. Preliminaries

(Countable) Labeled Markov chainsM over a set of atomic propositionsAP

are triples(S, P, L), whereS is a countable set of states,P : S × S → [0, 1] is
a countable stochastic matrix such that the countable sum ofnon-negative reals
∑

s′∈S P (s, s′) converges to1 for all s ∈ S, andL : AP → P(S) is a labeling
function whereL(q) is the set of states at which atomic propositionq is true. We
say thatM is finitely branching iff for alls ∈ S the set{s′ ∈ S | P (s, s′) > 0}
is finite. A pathπ from states in M is an infinite sequence of statess0s1 . . . with
s0 = s andP (si, si+1) > 0 for all i ≥ 0. For Y ⊆ S, we writeP (s, Y ) as a
shorthand for the (possibly infinite but well defined) sum

∑

s′∈Y P (s, s′).
The syntax of PCTL is given in Fig. 1. Path formulaeα are wrapping PCTL

formulae into “LTL” operators for Next, (Strong) Until, andWeak Until familiar
from linear-time temporal logic [18]. Until formulaeφU ≤kψ areStrongUntils
since paths that satisfy such a formula have to maintain temporary invariantφ
until they reach a state satisfyingψ, and such a state has to be reached within
finite transitions, and also withink transitions ifk 6= ∞. Weak Until formulae
φW ≤kψ areWeakUntils since reaching a state satisfyingψ is optional ifφ is an
invariant on the paths0s1 . . . sk, which is understood to beπ whenk = ∞. The
valuek = ∞ is being used to express unbounded Untils, whereask ∈ N expresses
a proper step bound on Untils. We writeφUψ as a shorthand forφU ≤∞ψ, and
φWψ as shorthand forφW ≤∞ψ.

Path formulaeα are interpreted as predicatesπ |= α over pathsπ of M .
PCTL formulaeφ are interpreted as subsets[|φ|]M of S. The semantics of path
and PCTL formulae is the standard one, given in Fig. 2. The measure space of
path sets is generated from cylinder path sets in the standard fashion [12]. We
thus writeProbM(s, α) for the probability of the measurable setPath(s, α) of
pathsπ = s . . . with π |= α. PCTL formulae wrap path formulae with probability
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π |= Xφ iff s1 ∈ [|φ|]M

π |= φU≤kψ iff ∃ l ∈ N : l ≤ k & sl ∈ [|ψ|]M & (∀0 ≤ j < l : sj ∈ [|φ|]M )

π |= φW ≤kψ iff ∀ l ∈ N : 0 ≤ l ≤ k → (sl ∈ [|φ|]M ) ∨ (∃ 0 ≤ j ≤ l : sj ∈ [|ψ|]M )

[|q|]M = L(q) [|φ ∧ ψ|]M = [|φ|]M ∩ [|ψ|]M

[|¬φ|]M = S \ [|φ|]M [|[α]⊲⊳p|]M = {s ∈ S | ProbM (s, α) ⊲⊳ p}

Figure 2: Semanticsπ |= α of path formulae for pathsπ = s0s1 . . . , and semantics[|φ|]M of
PCTL formulae:ProbM (s, α) is probability of setPath(s, α) of pathsπ = s . . . in M with
π |= α

thresholds (turning predicates on paths into predicates onstates), interpret atoms
according to the labeling functionL, and interpret negation and conjunction as
complement and intersection of predicates (respectively). The operatorsφ ∨ ψ
(disjunction) andφ → ψ (implication) are derived as¬(¬φ ∧ ¬ψ) and¬φ ∨ ψ,
respectively. Letff be an abbreviation for any[α]>1, andtt denotes any[α]≥0.

Example 1 For labeled Markov chainM in Fig. 3(a), [|[qU r]≥1/2|]M = {s0, s1}.
For the labeled Markov chainMs0

2 in Fig. 3 we have that[|[qW r]≥5/9|]M equals
{s0, s0s1, s0s1s1, s0s0, s0s0s1, s0s0s0}.

We say that PCTL formulaeφ andψ are semantically equivalent iff for all
labeled Markov chainsM we have[|φ|]M = [|ψ|]M . Each PCTL formulaφ is
semantically equivalent to a PCTL formula in “GreaterThan”normal form ob-
tained by replacing all occurrences of the form[α]<p in φ with the PCTL formula
¬[α]≥p, and by replacing any occurrences of the form[α]≤p in φ with the PCTL
formula ¬[α]>p. For example, the “GreaterThan” normal form of the formula
[[ X [qU r]<1/3]≤1/2 U r]>1/4 is [¬[ X¬[q U r]≥1/3]>1/2 U r]>1/4.

Assumption 1 (GreaterThan) Without loss of generality, PCTL of Fig. 1 is re-
stricted to ⊲⊳ ∈ {≥, >}.

We now state and prove a finite-state approximation lemma forthe validity of
Until formulae with non-strict probability thresholds at states of labeled Markov
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Figure 3: Labeled Markov chainM with s0 ∈ [|[qU r]≥1/2|]M , sinceProbM (s0, qU r) = 1/2

chains. This lemma will be crucial in proving that our game semantics of PCTL,
developed in Section 3, captures exactly the denotational semantics in Fig. 2.

Definition 1 (Finite Unfoldings) LetM = (S, P, L) be a labeled Markov chain.
For eachi ∈ N ands0 ∈ S we define the labeled Markov chainMs0

i = (Si, Pi, Li),
a random tree with roots0: unfold M from s0 as a full tree of depthi, where
edges have positive probability according toP . This may duplicate states but
such duplicates will satisfy the same atomic propositions.States at leveli have
a self-loop with probability1. The probability measuresP (s, ·) at levels< i are
those inM . For eachj ∈ N we restrictMs0

i to the finite-branching, and so finite-
state, labeled Markov chainMs0

i,j = (Si,j, Pi,j, Li,j) with one additional statetsink

which satisfiestt but no otherq ∈ AP: For eachs ∈ Si, let t1, t2, . . . be an
enumeration of{tk ∈ Si | P (s, tk) > 0} such thatP (s, tk) ≥ P (s, tk+1) for all
k ∈ N. ThenPi,j is obtained fromPi by settingPi,j(s, tk) = Pi(s, tk) for k ≤ j,
Pi,j(s, tsink) = 1 −

∑j
k=1 Pi,j(s, tk) andPi,j(tsink, tsink) = 1; state setSi,j con-

sists of thoses reachable froms0 via Pi,j, andLi,j is Li restricted to setSi,j and
extended to the new statetsink.

Example 2 Fig. 3(b) shows unfoldingMs0

2 for labeled Markov chainM of Fig. 3(a).

Lemma 1 (Finite-State Approximation) Let q, r ∈ AP and p ∈ [0, 1] for la-
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beled Markov chainM = (S, P, L). Thens ∈ [|[q U r]≥p|]M iff for all n ∈ N there
arek, l ∈ N with s ∈ [|[qU r]>p−1/n|]Ms

k,l
.

PROOF OFLEMMA 1. Consider first the case thatM is finitely branching. Recall
thatPath(s, qU r) denotes the set of paths beginning ins that satisfyq U r. Let
Pathi(s, qU r) be Path(s, (qU ≤ir) ∧

∧

0≤j<i ¬(qU ≤jr)), i.e., paths in whichq
holds until locationi wherer holds andr does not hold in locations smaller than
i. We setPath0(s, qU r) to bePath(s, qU ≤0r), i.e. the set{π = s0 · · · | s =
s0, s0 ∈ L(r)}

For the “if” part , assume that for alln ∈ N there isk ≥ 0 such thats ∈
[|[qU r]>p−1/n|]Ms

k
. Then,s ∈ [|[q U r]>p−1/n|]M follows by the monotonicity of the

denotational semantics for “GreaterThan” thresholds. Thus,s is in the intersection
⋂

n∈N
[|[qU r]>p−1/n|]M which equals[|[q U r]≥p|]M .

For the “only if” part , let s ∈ [|[q U r]≥p|]M and n ∈ N. It suffices to
find somek ≥ 0 with s ∈ [|[q U r]>p−1/n|]Ms

k
. As Pathi(s, qU r) is of form

Path(s, α) for a path formulaα, that set of paths is measurable. For alli 6= j note
that setsPathi(s, qU r) andPathj(s, qU r) are disjoint. SincePath(s, qU r) =
⋃

i≥0 Pathi(s, qU r) and as the latter is a disjoint union, we know that

ProbM (s,Path(s, qU r)) =
∑

i≥0

ProbM (s,Pathi(s, qU r))

By definition of convergence for that infinite sum, for everyn ∈ N there exists
k ≥ 0 such that

k
∑

i=0

ProbM (s,Pathi(s, qU r)) ≥ ProbM (s,Path(s, q U r)) − 1/n

As
∑k

i=1 ProbM(s,Pathi(s, qU r)) equalsProbMs
k
(s, qU r) we obtain thats is in

[|[qU r]>p−1/n|]Ms
k

and we are done.
As M is finitely branching, there exists an upper boundl on the branching

degree for all states inMs
k . It follows thatProbMs

k
(s, qU r) = ProbMs

k,l
(s, qU r).

For infinite branchingM the proof is similar. We have to be more careful
in noticing that every path setPathi(s, qU r) is still measurable and have to be
careful in the way in which we sum up the probability of the setPath(s, qU r).
But this works out since all infinite sums have absolute convergence, establishing
that for somek we haves ∈ [|[q U r]>p−1/n|]Ms

k
. The existence ofMs

k,l as required
follows from convergence ofProbMs

k,l
(s, qU r) to ProbMs

k
(s, qU r). 2
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Example 3 Consider the labeled Markov chain in Fig. 3(a):ProbM(s0, qU r) =
1/2 is attained by paths of increasing length, as the value of theinfinite sum
∑∞

j=1(1/3)j. But for alln ∈ N there isi ∈ N such that
∑i

j=1(1/3)j > 1/2− 1/n
and where that finite sum is attainable in a finite unfolding ofM . For example,
for Ms0

2 in Fig. 3 the probability ofqU r at s0 is 4
9

so for everyn < 18 we have
s0 ∈ [|[q U r]>1/2−1/n|]Ms0

2
. In Ms0

4 the probability ofqU r at s0 is 13
27

and so for
everyn < 54 we haves0 ∈ [|[pU q]>1/2−1/n|]Ms0

4
. Lemma 1 promises a similar

approximation for every (countable) labeled Markov chain.

Lemma 1 has a dual version, required in the proof of Theorem 2 below.

Corollary 1 For labeled Markov chainM = (S, P, L), q, r ∈ AP, andp ∈ [0, 1]:
s 6∈ [|[qW r]>p|]M iff for all n ∈ N there arek, l ∈ N with s 6∈ [|[qW r]≥p+1/n|]Ms

k,l
.

PROOF OFCOROLLARY 1. s 6∈ [|[qW r]>p|]M iff s ∈ [|[¬r U (¬q ∧ ¬r)]≥1−p|]M ,
asqW r ≡ ¬(¬r U (¬q ∧ ¬r)). By Lemma 1, for alln ∈ N there arek, l ∈ N

with s ∈ [|[¬rU (¬q ∧ ¬r)]≥1−p−1/n|]Ms
k,l

. Thus,s 6∈ [|[qW r]>p+1/n|]Ms
k,l

. 2

3. Game semantics

LetM = (S, P, L) be a labeled Markov chain over set of atomic propositions
AP. For each states ∈ S and PCTL formulaφ we define a 2-person Hintikka
gameGM(s, φ). As already mentioned, these games are played between two play-
ersV (the Verifier) andR (the Refuter). As before, we let!V = R and!R = V.

After having defined these games and their winning conditions, we show that
each gameGM(s, φ) is won by playerV iff s ∈ [|φ|]M ; and won by playerR iff
s 6∈ [|φ|]M . In particular, each gameGM(s, φ) is determined, exactly one of the
playersV andR wins that game. The gameGM(s, φ) has as set of configurations

CfM(s, φ) = {〈s′, ψ, C〉 | s′ ∈ S, ψ ∈ cl(φ), C ∈ {R, V}}

where we define the set of PCTL formulaecl(φ), theclosure ofφ, in Fig. 4. This
set merely delineates the universe of PCTL formulaeψ such that all configurations
〈t, ψ, C〉 reachable in gameGM(s, φ) satisfyψ ∈ cl(φ). Setcl1(φ) is part of the
closure as familiar from first-order logic. Setcl2(φ) is specific to PCTL and will
be discussed implicitly in game moves for clausePath Probabilityof PCTL. The
intuition behind a configuration〈t, ψ, C〉 is that playerC claims (or has the burden
of proof) thatψ holds in statet.
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Setcl1(φ) is the actual set of sub-PCTL-formulae ofφ, includingφ itself. Setcl2(φ)
consists of all formulae[α]⊲⊳p′ such that either

(a) α isψ1 Uψ2, ⊲⊳ is>, p ∈ [0, 1], and⊲⊳′ ∈ {>,≥} with [α]⊲⊳′p ∈ cl1(φ),
(b) α isψ1 Wψ2, ⊲⊳ is≥, p ∈ [0, 1], and⊲⊳′ ∈ {>,≥} with [α]⊲⊳′p ∈ cl1(φ),
(c) α isψ1 U≤k′

ψ2, p ∈ [0, 1], and∞ > k > k′ with [ψ1 U≥kψ2]⊲⊳p ∈ cl1(φ),
(d) α isψ1 W ≤k′

ψ2, p ∈ [0, 1], and∞ > k > k′ with [ψ1 U≥kψ2]⊲⊳p ∈ cl1(φ)

Figure 4: Closurecl(φ) = cl1(φ) ∪ cl2(φ) of φ satsifying an invariant: For all configurations
〈t, ψ, C〉 reachable in gameGM (s, φ), formulaψ is in cl(φ)

Definition 2 1. The moves of gameGM(s0, φ) are defined by structural induc-
tion onψ ∈ cl(φ), simultaneously for alls ∈ S, in Fig. 5.

2. A play inGM (s0, φ) is an element ofCfM(s, φ)+ ∪ CfM(s, φ)ω beginning
in 〈s0, φ, V〉, where next configurations are determined as in Fig. 5.

The intuition behind the moves is as follows. In move M1, any formula[α]>1

is made semantically equivalent toff whereas move M2 encodes that any formula
[α]≥0 is semantically equivalent tott.

Assumption 2 By nature of the moves M1 and M2, moves to configurations of
form 〈s, [α]⊲⊳p, C〉 never satisfy that⊲⊳ p equals≥ 0 or > 1.

In move M3, the winner of configurations〈s, q, C〉 is determined according
to whether atomq is true at states. The moves M4 and M5 are basically those
familiar from first-order logic for negation and conjunction (respectively).

In order to handle more complex operators we have to devise more complex
moves. In games for branching-time logics such as CTL or theµ-calculus (see
e.g. [21]), the universal quantification in∀X ψ (“at all next states,ψ holds”) is
resolved by Refuter’s choice of a successor state; and the existential quantification
in ∃X ψ (“at some next state,ψ holds”) is resolved by Verifier supplying one
successor state, both as familiar from the case of quantifiers in first-order logic.
For the next operator in PCTL, however, things are more complicated as reflected
in move M6. The next operator[ Xφ]⊲⊳p includes a promised probability⊲⊳ p, “at
leastp” or “more thanp”. At configuration〈s, [ Xψ]⊲⊳p, C〉 of move M6, playerC
chooses a subsetY of {s′ ∈ S | P (s, s′) > 0} satisfyingP (s, Y ) ⊲⊳ p. (If she
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M1 At configurations〈s, [α]>1, C〉, player!C wins
M2 At configurations〈s, [α]≥0, C〉, playerC wins
M3 At configurations〈s, q, C〉: playerC wins if s ∈ L(q); player !C wins if s 6∈

L(q)
M4 At configuration〈s,¬ψ, C〉, the next configuration is〈s, ψ, !C〉
M5 At configuration〈s, ψ1 ∧ ψ2, C〉, player!C choosesi ∈ {1, 2}, next configura-

tion is 〈s, ψi, C〉
M6 At configuration〈s, [Xψ]⊲⊳p, C〉, playerC chooses a subsetY ⊆ {s′ ∈ S |

P (s, s′) > 0} satisfyingP (s, Y ) ⊲⊳ p; then player!C chooses somes′ ∈ Y ,
next configuration is〈s′, ψ, C〉

M7 At configuration〈s, [ψ1 Uψ2]≥p, C〉, player!C chooses somen ∈ N such that
p− 1/n ≥ 0 with resulting next configuration〈s, [ψ1 Uψ2]>p−1/n, C〉

M8 Dually, at configuration〈s, [ψ1 Wψ2]>p, C〉, now playerC choosesn ∈ N such
thatp+ 1/n ≤ 1 with resulting next configuration〈s, [ψ1 Wψ2]≥p+1/n, C〉

M9 At configuration〈s, [α]⊲⊳p, C〉 where eitherα is ψ1 Uψ2 and⊲⊳ is >; or α is
ψ1 Wψ2 and⊲⊳ is≥

– playerC is able to move to next configuration〈s, ψ2, C〉
– if player C didn’t move, player!C can move to next configuration

〈s, ψ1, C〉
– if neither player moved above, the play must proceed as follows: Player
C chooses a sub-distributiond : S → [0, 1] such that

∑

s′∈S

d(s′) > 0 &
∑

s′∈S

d(s′) ≥ p & ∀s′ ∈ S : d(s′) ≤ P (s, s′)

(1)
Next, player!C chooses some states′ ∈ S with d(s′) > 0 and the next
configuration is〈s′, [α]⊲⊳d(s′)·P (s,s′)−1 , C〉.

M10 At configuration〈s, [α]⊲⊳p, C〉whereα isψ1 U≤kψ2 orψ1 W ≤kψ2 with k ∈ N:
– if k = 0 andα is ψ1 U≤kψ2, the next configuration is〈s, ψ2, C〉
– if k = 0 andα is ψ1 W ≤kψ2, playerC chooses as next configuration

either〈s, ψ1, C〉 or 〈s, ψ2, C〉
– if k > 0, the moves are defined as in M9, except in the last item,

where nowk in α is decreased tok − 1 for that next configuration
〈s′, [α]⊲⊳d(s′)·P (s,s′)−1 , C〉

Figure 5: Moves of gameGM (s, φ)
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can’t find such a set, she loses the play.) The implicit claim of C is thatψ holds at
all states ofY , and so this move acts like a universal quantification but notover
all elements but over enough to make the probabilities add up. The other player
!C then chooses an elements′ from Y and the next configuration is〈s′, ψ, C〉. (By
Assumption 2, playerC does not have the option of choosingY = {}.)

This leaves us with explaining and motivating the moves forα being the Weak
or Strong Until. Inqualitativegames, Until operators are resolved by using the
logical equivalenceqU r ≡ r ∨ (q ∧ X (qU r)) – and similarly for Weak Until
operators. The only problem in adopting this for PCTL is in the possibility of de-
ferring promises forever. For games in qualitative settings this is typically handled
by fairness, but for PCTL fairness is not strong enough:

Example 4 PCTL formula[q U r]≥1/2 holds at states0 in the labeled Markov
chain of Fig. 3(a). But we have to appeal to the entire infinitesum

∑∞
i=1(1/3)i for

proving this. Any fairness constraint forcing a transitionfroms0 into {s1, s2} cuts
that infinite sum down to a finite one, failing to prove that formula for states0.

However, allowing to defer the satisfaction of the Strong Until indefinitely is
unsound. The PCTL formula[q U r]>.5 does not hold ats0 but allowing Verifier
to delay promises forever may be unsound, e.g., Verifier could supply the promise
1/3 immediately, promising more than1/6 in the future, and then – by deferring
the promise indefinitely – Verifier could win gameGM(s0, [qU r]>0.5).

To address this problem we add a specialǫ-move as well as acceptance condi-
tions for infinite plays. If the probability is at leastp, playerC (who claims this)
should be able to prove that it is greater thanp − ǫ for everyǫ > 0. On the other
hand, if the probability is strictly less thanp then there exists anǫ for which it is
less thanp− ǫ; and player!C does not lose ground by giving up anǫ. Thus, player
!C chooses theǫ and playerC proves in finite time (appealing to Lemma 1) that she
can get as close as needed to the bound. The same intuition (but dual) works for
WeakUntil, when the Weak Until formula in question doesnothold. This follows
from the semantic equivalence¬(φUψ) ≡ (¬ψ) W (¬φ ∧ ¬ψ) of path formulae.

In move M7, player!Cmakes such anǫ = 1/nmove and the next configuration
is the original one except that the threshold changes from≥ p to > p − 1/n.
Player!C can indeed choose such ann sincep cannot be0. The intuition is that
[p, 1] =

⋂

n∈N
(p− 1/n, 1] so this behaves like auniversalquantification.

In move M8, playerC can choose such ann sincep < 1. The intuition
is that a Weak Until with a> threshold is the dual of a Strong Until with a≥
threshold (based on¬(φUψ) ≡ (¬ψ) W (¬φ ∧ ¬ψ)), so it is like anexistential
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quantification. The next configuration is the original one except the threshold
changes from> p to≥ p+ 1/n.

Move M9 is the most complex one. At configuration〈s, [α]⊲⊳p, C〉, playerC
can claim thatψ2 is true. If she does not do this, player!C can claim thatψ1 is
not true. If none of these happen, playerC has to chose a structural element of
the model, a sub-distributiond of P (s, ·) that has positive mass, approximates the
probability distributionP (s, ·), and specifies the re-distribution of promise⊲⊳ p
into promised probabilities at successor states. Sinced(s′) > 0, we also have
0 < d(s′) · P (s, s′)−1 ≤ 1 in the next configuration〈s′, [α]⊲⊳d(s′)·P (s,s′)−1 , C〉 of
move M9 by (1). The promised probability at a next configuration with states′ is
given byd(s′), divided by the actual transition probabilityP (s, s′).

Move M10 behaves like move M9 excect that a Bounded Until withbound0
has to realizeψ2 right away; a Bounded Weak Until with bound zero has to realize
at least one ofψ1 orψ2 right away; and thek is decreased tok− 1 in α if the next
configuration does not have a proper sub-formula ofα to consider.

In most moves, plays either end or move to configurations withproper sub-
formula in the closure. In a configuration with Strong Until with non-strict bound
or Weak Until with strict bound, the next configuration changes from non-strict to
strict bound or vice versa. In a configuration with Strong Until with strict bound
or Weak Until with non-strict bound, the next configuration has the same path
formula and threshold type, or has a proper sub-formula.

Thus, all infinite plays end with an infinite suffix of configurations that are

A1. all of the form〈si, [ψ1 Wψ2]≥pi
, C〉 or A2. all of the form〈si, [ψ1 Uψ2]>pi

, C〉

Configurations of these suffixes are either labeled by StrongUntil with strict
bound or Weak Until with non-strict bound, where the states and the exact proba-
bility bound may still change, but where neither the playerC nor the sub-formulae
ψ1 andψ2 change.

Definition 3 (Acceptance conditions) 1. PlayerVwins all infinite plays with
an infinite suffix either of type A1 above withC = V, or of type A2 above with
C = R. PlayerR wins all other infinite plays: those with an infinite suffix either of
type A1 whenC = R, or of type A2 whenC = V.

2. Finite plays are won as stipulated in Fig. 5. In particular, if a player has to
make a choice and cannot do so, the other player wins that play.

These are Büchi type acceptance conditions, and so our games are known to be
determined [16]. We use the notion of strategy for playerC informally. But such
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strategies contain, for each configuration of a game, at mostone set of choices as
required by the applicable move from M1-M10.

Example 5 We describe a winning strategy for playerV in gameGM(s0, [α]≥1/2)
forM as in Fig. 3(a) andα = qU r. The initial configuration is〈s0, [α]≥1/2, V〉. In
the first move, playerR choosesn ∈ N with next configuration〈s0, [α]>1/2−1/n, V〉.
Then, as long as the playΓ0Γ1 . . . remains in configurationsΓi of the form
〈s0, [α]>pi

, V〉, player V is going to choose the sub-distributiond with constant
valuesd(s2) = 0 andd(s1) = 1

3
− 1

2n
, and dynamic valued(s0) = pi − d(s1).

A simple calculation shows that as long as playerR choosess0 as the next state
(clearly, if she choosess1 she is going to lose ass1 ∈ L(r)) the promised proba-
bility > pi is going to decrease according to the following sequence:p0 = 1

2
− 1

n
,

p1 = 1
2
− 3

2n
, p2 = 1

2
− 6

2n
, p3 = 1

2
− 15

2n
, and in generalpi = 1

2
− 3i+3

4n
for i ∈ N.

Wheneverpi decreases below1
3

(and there is somei ∈ N for which this happens),
playerV still choosesd with d(s2) = 0 as above but now definesd(s1) = pi and
d(s0) = 0, thereby forcing playerR to move tos1 and lose.

Example 6 Although the choice ofd in Example 5 may seem arbitrary, it meshes
well with the use of Lemma 1. Consider again the game from Example 5. Suppose
playerR chooses9 ∈ N in the first move, with next configuration〈s0, [α]>7/18, V〉.
Since for theMs0

2 in Fig. 3, ProbM
s0
2

(s0, α) = 4
9
> 7

18
, player V can useMs0

2

to guide her choices. InMs0

2 , ProbM
s0
2

(s0s1, α) = 1 andProbM
s0
2

(s0s0, α) = 1
3
.

Player V uses the gap of1
18

and re-distributes it between the successors ofs0.
She can choose, for example,d(s1) = 1

3
− 1

54
and d(s0) = 1

9
− 1

54
. The next

possible configurations are then〈s1, [α]>17/18, V〉 and 〈s0, [α]>5/18, V〉. PlayerV
identifies the resulting states with those obtained inMs0

2 , heres0s1 ands0s0 (re-
spectively). Ass0s1 ∈ [|r|]Ms0

2
the first is clearly a winning configuration. From

〈s0, [α]>5/18, V〉 and the corresponding locations0s0 in Ms0

2 , playerV notices that
ProbM

s0
2

(s0s0s1, α) = 1 and choosesd(s1) = 5/18. The next configuration is
〈s1, [α]>15/18, V〉 (with correspondings0s0s1 in Ms0

2 ) and won by supplyingr.

We define winning strategies and use them to define which player wins a game.

Definition 4 1. A strategyσ for playerC in gameGM(s, φ) is winning from a
configurationΓ in that game iff playerC wins all plays beginning in config-
urationΓ when playerC plays according to his strategyσ.

2. PlayerC winsGM(s, φ) iff playerC has a winning strategy from〈s, φ, V〉.

14



We can now formalize our main result that the denotational semantics of PCTL
is captured exactly by the existence of winning strategies in gamesGM(s, φ).

Theorem 2 LetM = (S, P, L) be a labeled Markov chain overAP, s ∈ S, andφ
a PCTL formula. Thens ∈ [|φ|]M iff playerV wins gameGM(s, φ); ands 6∈ [|φ|]M
iff playerR wins gameGM(s, φ). In particular, gameGM(s, φ) is determined.

PROOF OFTHEOREM 2. Given PCTL formulaφ, both “iff” claims are shown by
structural induction on PCTL formulaeψ in the closure ofφ, simultaneously on
all states ofM . As exactly one ofs ∈ [|ψ|]M ands 6∈ [|ψ|]M holds, it suffices to
show both “iff” claims in Theorem 2 for suchψ in their “only if” versions, which
consists of six cases. We prove only the most interesting case here, whenφ equals
[α]⊲⊳p where either

(a) α is ψ1 Uψ2 and⊲⊳ is>

(b) α is ψ1 Wψ2 and⊲⊳ is≥ or

(c) α is ψ1 U ≤kψ2 or ψ1 W ≤kψ2 with k ∈ N and⊲⊳ is either> or≥:

(All other cases follow a routine argument.) We show for all three cases above
that (#1) s ∈ [|φ|]M implies playerV wins gameGM(s, φ) and (#2) s /∈ [|φ|]M
implies playerR wins gameGM(s, φ).

(#1) First, lets ∈ [|φ|]M . The formulaα is logically equivalent toψ2 ∨ (ψ1 ∧
Xα) and, in case thatα is bounded, the bound decreases by1. It follows that
it is either the case thats ∈ [|ψ2|]M or s ∈ [|ψ1 ∧ [ Xα]⊲⊳p|]M . In the first case,
playerV chooses to move to configuration〈s, ψ2, V〉 and by induction she has a
winning strategy from this configuration. In the second case, by induction there
is a winning strategy for playerV from configuration〈s, ψ1, V〉, so if playerR
chooses to go to this configuration, playerV wins. If playerR does not move to
ψ1, then M9 demands that playerV chooses a sub-distributiond : S → [0, 1]
satisfying (1). By assumptions ∈ [|[ Xα]⊲⊳p|]M . Let T be the set of statest such
thatProbM(t, α) > 0 andP (s, t) > 0. We choosed such thatd(s′) = 0 for all
s′ ∈ S \ T .

So it suffices to specifyd on setT . For that, letp′ =
∑

t∈T P (s, t)·ProbM(t, α).
Consider the case that⊲⊳ is>. By assumptionp′ > p. In the case thatp = 0, we
choose some statet ∈ T such thatProbM(t, α) > 0, we setd(t) = ProbM(t, α) ·
P (s, t), andd(t′) = 0 for all t′ 6= t. In the case thatp > 0, let δ be p′ − p.
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We are going to distribute this gapδ between all the states inT according to the
distributionP (s, ·). That is, for allt ∈ T

d(t) = max(0, (ProbM(t, α) − δ) · P (s, t))

In case thatProbM(t, α) ≤ δ we thus haved(t) = 0 (and so effectively removet
from setT above). Asp′ =

∑

t∈S ProbM(t, α) · P (s, t) andp > 0 there must be
at least one statet such thatProbM(t, α) ≥ p′ and henceProbM(t, α) − δ > 0,
implying d(t) > 0. It follows that

∑

t∈T d(t) ≥ p′ − δ ≥ p.
Consider the case that⊲⊳ is ≥. By assumptionp′ ≥ p. Let δ bep′ − p. For all
t ∈ T , let

d(t) = max(0,ProbM(t, α) − δ · P (s, t))

If ProbM(t, α) ≤ δ, set d(t) = 0. This completes the specification of sub-
distributiond chosen by playerV.

Now regardless of the choice of playerR, the next configuration is〈t, [α]⊲⊳p′, V〉
such thatt ∈ [|[α]⊲⊳p′ |]M . So playerV maintains the truth value of the configuration.
Notice that also the distance from the promised boundp′ and the real probability
is being maintained.

Case (a):For (Strong) Until, we appeal to Lemma 1. We treat sub-formulaeψ1

andψ2 as propositions (respectively, theq andr in that lemma) and annotate states
ofM byψ1 andψ2. Letp′ = ProbM(s, ψ1 Uψ2). By assumptionp′ > p. In partic-
ular,s ∈ [|[ψ1 Uψ2]≥p′|]M . Letn ∈ N be such thatp′ > p′−1/n > p. By Lemma 1
(applied top′ instead ofp), there arek, l ≥ 0 with s ∈ [|[ψ1 Uψ2]>p′−1/n|]Ms

k,l
and

so the probability ofψ1 Uψ2 in Ms
k,l ats is greater thanp. PlayerV’s strategy is to

consider this systemMs
k,l. She chooses sub-distributionsd : S → [0, 1] according

to the probabilitiesProbMs
k,l

(t, α) (instead ofProbM(t, α) but as explained above).
By definition ofMs

k,l there can be only finite sequences of configurations of the
form 〈s′, [α]>p, V〉, and so playerV wins (cf. Example 6).

Case (b):For Weak Untilψ1 Wψ2, all infinite plays have a suffix of configu-
rations of form〈s′, [ψ1 Wψ2]≥p, V〉 and are thus winning for playerV. Finite plays
again reach configurations of the form〈s′, ψi, V〉 for i ∈ {1, 2}, where induction
applies directly.

Case (c):For bounded operators, as the bound decreases, in a finite number of
steps the play moves to configurations of the form〈s′, ψi, V〉 for i ∈ {1, 2}, where
induction applies directly, and in the desired manner.

(#2) Let s 6∈ [|φ|]M . It follows that ProbM(s, α) ≤ p in case that⊲⊳ is >;
andProbM(s, α) < p in case that⊲⊳ is ≥. As above,α is logically equivalent
to ψ2 ∨ (ψ1 ∧ Xα) and in case thatα is bounded the bound decreases by1.
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It follows that s 6∈ [|ψ2|]M and hence there is a winning strategy for playerR

from configuration〈s, ψ2, V〉. Also, it is either the case thats 6∈ [|ψ1|]M or s 6∈
[|[ Xα]⊲⊳p|]M . In the first case, playerR has a winning strategy from configuration
〈s, ψ1, V〉 and chooses this configuration. In the second case, playerV chooses a
sub-distributiond : S → [0, 1] such that (1) hold.

We claim that there is somes′ ∈ S with d(s′) > 0 and ProbM(s′, α) 6⊲⊳
d(s′) · P (s, s′)−1. Proof by contradiction: otherwise,ProbM(s′, α) ⊲⊳ d(s′) for
all s′ with d(s′) > 0 implies that

∑

s′|d(s′)>0 ProbM(s′, α) ⊲⊳
∑

s′∈S d(s
′) ≥ p

by (1). But this renders
∑

s′|d(s′)>0 ProbM(s′, α) ⊲⊳ p which directly contradicts
s 6∈ [|[ Xα]⊲⊳p|]M . Thus, playerR can choose such ans′ and maintain the play in
configurations of the form〈s′, [α]⊲⊳p′ , V〉 such thats′ 6∈ [|[α]⊲⊳p′ |]M . Notice that
playerR can choose a successors′ such that

p′ − ProbM(s′, α) ≥ p− ProbM(s, α)

i.e., the gap between the promise and the actual probabilitydoes not decrease.
We now study the consequences of this capability of playerR for the different

forms of path formulaα:
Case (a): For Weak Until formulae, we appeal to Corollary 1. As before,

we treatψ1 andψ2 as propositions and annotate states ofM by them. Letp′ =
ProbM(s, ψ1 Wψ2). By assumptionp′ ≤ p. In particular,s /∈ [|[ψ1 Wψ2]>p′|]M .
Let n ∈ N be such thatp′ < p+ 1/n < p. By Corollary 1, there arek, l ≥ 0 with
s /∈ [|[ψ1 Wψ2]≥p′+1/n|]Ms

k,l
and so the probability ofψ1 Wψ2 in Ms

k,l at s is less
thanp. PlayerR’s strategy is to consider this systemMs

k,l. Let d : S → [0, 1] be
the sub-distribution chosen by playerV. As s /∈ [|[ψ1 Wψ2]≥p|]Ms

k,l
, there is some

s′ ∈ S such thats′ /∈ [|[ψ1 Wψ2]≥d(s′)·P (s,t)−1 |]Ms
k,l

. So playerR chooses thiss′.
By definition ofMs

k,l, there can be only finite sequences of configurations of form
〈s′, [α]≥p, V〉, and so playerR wins. This is dual to the strategy depicted forV in
Example 6.

Case (b):For (Strong) Until formulae, infinite plays of configurations of the
form 〈s′, [ψ1 Uψ2]⊲⊳p, V〉 are winning for playerR by the winning conditions for
infinite plays. Any finite play reduces to configurations of the form 〈s′, ψi, V〉 for
i ∈ {1, 2}, where induction applies directly, and in the desired manner.

Case (c):For bounded operators, as the bound decreases, in a finite number
of steps the play moves to configurations of the form〈s′, ψi, V〉 for i ∈ {1, 2} and
so playerR wins by induction. 2

In gameGM(s, φ), playerV owns initial configuration〈s, φ, V〉. For a dual
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game, with the same moves but with initial configuration〈s, φ, R〉, Theorem 2 and
its proof then remain to be valid if we swap the role of playersin both.

Example 7 Consider gameGM(s0, [qU r]>1/2), whereM is as in Fig. 3(a), and
letα = qU r. From configuration〈s0, [α]>1/2, V〉, playerV won’t move to〈s0, r, V〉
as she would then lose. For the same reason, playerR won’t move to〈s0, q, V〉. So
if both players play strategies that are “optimal” for them,playerV has to choose
a sub-distributiond at the initial configuration.

If d(s2) > 0, playerV loses as playerR can then chooses2. Sod(s2) = 0
for any “optimal” strategy of playerV. But bothd(s1) and d(s0) have to be
positive since otherwise the mass ofd can be at most1/3 by (1), which would
violate (1). Since playerV plays an “optimal” strategy,d(s1) 6= 1/3, as otherwise
player R could choose as next configuration〈s1, [α]>(1/3)·(1/3)−1 , V〉 and would
then win by move M1. By (1), there is thereforeǫ > 0 such thatd(s1) = 1/3 − ǫ.
In particular, playerR won’t chooses1 as she would lose the next configuration
〈s1, [α]>1−3ǫ, V〉 (sinces1 ∈ L(r)). So playerR choosess0 and the next configu-
ration is 〈s0, [α]>3d(s0), V〉. By (1),3d(s0) must be at least1/2 + 3ǫ and so player
V promisesmorein > 3d(s0) than she promised in the previous configuration.

At configuration〈s0, [α]>3d(s0), V〉, playerV avoids losing only by choosing a
sub-distributiond that mapss0 to 0 and all other states to positive mass as before,
and for the same reasons. Similarly,d(s1) < 1/3 has to hold. So although a new
functiond with a new value ofǫ may be chosen, the next configuration is still of
the same type〈s0, [α]>p′, V〉 with p′ > 1/2. Thus, either the play is finite and so
lost for playerV as described above; or the play is infinite and so lost for player
V by the acceptance conditions A1 on infinite plays.

We conclude that playerR wins that game. A winning strategy for her from the
initial configuration only needs to be specified for move M9:

• playerR will never choose a configuration of form〈s0, q, V〉, should such an
opportunity arise

• whenever playerV chooses sub-distributiond with d(s2) > 0, playerR will
chooses2

• otherwise, it must be the case that bothd(s1) and d(s2) are positive; if
d(s1) ≥ 1/3, playerR choosess1

• if d(s1) < 1/3, playerR choosess0
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4. Winning strategies

We show that when a player can win gameGM(s, φ) she can use winning
strategies that are of a very specific type. In addition to being memoryless in the
classical sense, these winning strategies choose very structured distributions when
re-visiting a state in a configuration with a Strong or Weak Until operator.

As before, we use the notion of strategy informally. A strategy is memoryless
if the choices of its player depend solely on the current configuration, not on
the finite history of configurations that preceded the current one in a play. In
our games, there can be configurations of type〈s, [α]⊲⊳p, C〉 for the same state
s and the same path formulaα (e.g.,ψ1 Uψ2) but with different bounds⊲⊳ p.
We show that it is enough to consider winning strategies which induce bounds
that change monotonically, as defined below. Subsequently,for sub-distributions
d, d′ : S → [0, 1], we write

• d′ ≤ d iff for all s ∈ S we haved′(s) ≤ d(s)

• d′ < d iff d′ ≤ d andd′(s) < d(s) for somes ∈ S

For a locally monotonestrategy the choice of sub-distributiond at configuration
〈s, [α]⊲⊳p, C〉 is monotone in⊲⊳ p, regardless of the history of a play.

Definition 5 (Locally Monotone Strategies) Strategyσ for playerC in GM(s, φ)
is locally monotoneiff for all configurations〈s, [α]⊲⊳p, C〉 and 〈s, [α]⊲⊳p′ , C〉 that
occur in plays consistent withσ (but not necessarily in the same play), whered
andd′ are the sub-distributions chosen according toσ at these two configurations
(respectively), thenp ≥ p′ impliesd ≥ d′ andp > p′ impliesd > d′.

A cyclically monotonestrategy is monotone on cyclic paths within single
plays: its player can force a decrease or increase of the thresholds depending
on the path formula and on whether it is aV or R configuration.

Definition 6 (Cyclically Monotone Strategies) A strategyσ for playerC in game
GM(s, φ) is cyclically monotoneiff for any two configurations〈s, [α]⊲⊳p, C

′〉 and
〈s, [α]⊲⊳p′, C

′〉 that occur in this order on some play consistent withσ, then

• α = ψ1 Uψ2 andC = C
′ implyp′ < p,

• α = ψ1 Wψ2 andC = C
′ implyp′ ≤ p,

• α = ψ1 Uψ2 and!C = C
′ implyp′ ≥ p,
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• α = ψ1 Wψ2 and !C = C
′ implyp′ > p.

The existence of winning strategies implies the existence of winning strategies
that are locally monotone and cyclically monotone.

Theorem 3 For every gameGM (s, φ), there exists a winning strategy for player
C iff there exists a memoryless winning strategy for playerC that is also locally
monotone and cyclically monotone.

PROOF OFTHEOREM 3. Assuming that there exists some winning strategy for
playerC in gameGM(s, φ), it suffices to show that a slight modification of the
winning strategy synthesized in the proof of Theorem 2 is memoryless, locally
monotone, and cyclically monotone. That slightly modified strategy will clearly
be memoryless by construction. We now describe this modifiedwinning strategy
and first prove its local monotonicity, by induction as in theproof of Theorem 2.
Then we prove that it is cyclically monotone.

Modified winning strategy and its local monotonicity.The only configurations
where playerC needs to make choices are of form〈s, [α]⊲⊳p, C

′〉, 〈s, ψ1 ∨ ψ2, C〉,
and〈s, ψ1 ∧ ψ2, !C〉.

With the latter two, we restrictC’s strategy to chooseψ1 whenever possible
and, only when impossible, to chooseψ2. This is similar to what one can do in
Hintikka games for first-order logic. We show that the way configurations of the
form 〈s, [α]⊲⊳p, C

′〉 are handled induces a memoryless and monotone strategy.
If α = Xψ, then the strategy defined in the proof of Theorem 2 chooses the

set of successors according to the states, and is clearly memoryless.
If !C = C

′ and eitherα = ψ1 Uψ2 and⊲⊳ = ≥; orα = ψ1 Wψ2 and⊲⊳ = >,
then playerC has to choose a valuen ∈ N. By choosing the minimal possiblen
she ensures that the strategy is memoryless.

Consider two configurations〈s, [α]⊲⊳p1
, C′〉 and〈s, [α]⊲⊳p2

, C′〉. Whenever the
play moves to configurations of the form〈s′, ψi, C

′〉 for i ∈ {1, 2}, the strategy is
memoryless, locally monotone, and cyclically monotone by induction. We start
with proving local monotonicity for moves that may choose sub-distributions.

1. For configurations whereα = ψ1 Wψ2, α = ψ1 W ≤kψ2, or α = ψ1 U ≤kψ2,
andC = C

′ we claim that the strategy composed in the proof of Theorem 2 is
locally monotone by induction. Intuitively, this can be seen by the strategy using
the gapδ between the probability of the formula and the required threshold. The
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strategy partitions this gap between all successors, so if the same state is visited
with different thresholds, the partition of the gap impliesthat the distribution does
not increase.

Let p′ = ProbM(s, α) andδi = p′ − pi for i ∈ {1, 2}. According to the proof
of Theorem 2 in configuration〈s, [α]⊲⊳pi

, C〉 playerC chooses the distribution

di(t) = max(0, (ProbM(t, α) − δi) · P (s, t))

It follows that if p1 ≥ p2, then for everyt ∈ S we haved1(t) ≥ d2(t). If follows
that if p1 = p2, thend1 = d2. Consider the case thatp1 > p2. Thenp1 > 0 and
for somet we haved1(t) > 0 andd1(t) = ProbM(t, α) − δ1. As δ1 < δ2 and
d2(t) = ProbM(t, α) − δ2 it follows thatd1(t) > d2(t).

2. For the case whereα = ψ1 Uψ2 andC = C
′, the strategy as defined in the

proof of Theorem 2 is not locally monotone. We modify it as follows: For every
configuration〈s, [ψ1 Uψ2]>p, C〉 the sub-distributiond is chosen according to the
minimal k such that some fraction ofProbMs

k
(s, α) is greater thanp. The exact

definition of this fraction is given below. Furthermore, we use the gap between
ProbMs

k
(s, α) andProbMs

k−1
(s, α) to ensure local (and later cyclic) monotonicity.

The definition of the sub-distributiond and the proof itself are quite technical.
Consider the configuration〈s, [α]>p, C〉. We assume, without loss of general-

ity, thats /∈ [|ψ2|]M . We measure the exact probability to satisfyα within i steps.
For everyt ∈ S let

nt
0 = ProbM t

0
(t, α) nt

i = ProbM t
i
(t, α) − ProbM t

i−1
(t, α) (i > 0)

Consider the following increasing sequence:

N t
0 =

nt
0

2
N t

i = N t
i−1 +

∑i
j=0

1
2i+1−j n

t
j (i > 0)

That is,N t
1 = 3

4
nt

0 + 1
2
nt

1, N
t
2 = 7

8
nt

0 + 3
4
nt

1 + 1
2
nt

2, N
t
3 = 15

16
nt

0 + 7
8
nt

1 + 3
4
nt

2 +
1
2
nt

1, and so on. Notice thatlimi→∞N t
i = ProbM t

k
(t, α). Let i0 be minimal such

that
∑

t∈S N
t
i0
· P (s, t) > p. By abuse of notation fori ≥ 0, we writeN s

i+1 =
∑

t∈S N
t
i ·P (s, t). That is,N s

i is the sum of the differentN t
i−1 normalized by their

probabilities to get froms to t. To simplify notations, fori < 0 and for allt we set
N t

i = N s
i+1 = 0. The valueN t

i0
· P (s, t) is going to be the basis for definingd(t).

Notice that it must be the case thatN s
i0 ≤ p and thatN t

i0 −N t
i0−1 > 0. In order to

maintain local monotonicity we distribute the gap between the required threshold
p andN s

i0
between all the statest whereN t

i0+1 > 0. We have to be extremely
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careful with the statess for whichN s
i0

= p. For these states, we take a constant
fraction ofN t

i0
−N t

i0−1 and distribute it among the successorst. We then have to
scale the distributiond for all statess for which this constant fraction surpasses
the required bound.

We setd(t) as follows:

d(t) =

(

N t
i0−1 +

(

1

4
+

3

4

p−N s
i0

N s
i0+1 −N s

i0

)

(

N t
i0 −N t

i0−1

)

)

· P (s, t)

It is simple to see that
∑

t∈S d(t) > p. Indeed,
∑

t∈S d(t) is the sum of the
following three expressions:

∑

t∈S

N t
i0−1 · P (s, t) = N s

i0

∑

t∈S

N t
i0
−N t

i0−1

4
· P (s, t) =

N s
i0+1 −N s

i0

4

∑

t∈S

3

4

p−N s
i0

N s
i0+1 −N s

i0

· (N t
i0 −N t

i0−1) · P (s, t) =
3

4
(p−N s

i0)

AsN s
i0+1 > p the result follows.

Furthermore, when going to some successort of s the choice ofi0 for s implies
that for the choice of the sub-distributiond for t some valuei′0 < i0 is going to be
used. Thus, the sequence of configurations of the form〈t′, [α]>p′, C〉 is finite and
playerC is winning.

We show that this definition of the sub-distributiond implies local monotonic-
ity. Consider two configurations〈s, [α]>p1

, C〉 and〈s, [α]>p2
, C〉. Let d1 andd2 be

the sub-distributions chosen byσ in these configurations and leti10 andi20 be the
values used to defined1 andd2, respectively. By definition,dj(t) is in the open
interval(N t

ij
0
−1
P (s, t), N t

ij
0

P (s, t)) for j ∈ {1, 2}. By definition, if p1 = p2, then

i10 = i20 and it follows thatd1 = d2. Similarly, if p1 > p2, theni10 ≥ i20. If i10 > i20,
the strictness ofd1 > d2 follows from the strictness of the sequenceN t

i . If i10 = i20,
thend1 > d2 asp1 > p2.

Cyclic monotonicity of modified winning strategy.We turn now to consider cyclic
monotonicity. Consider the configurations〈s, [α]⊲⊳p1

, C′〉 and 〈s, [α]⊲⊳p2
, C′〉 that

appear in a play consistent withσ according to this order.
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1. Consider the case whereα = ψ1 Wψ2, α = ψ1 W ≤kψ2; or α = ψ1 U ≤kψ2

andC = C
′. The strategy defined in the proof of Theorem 2 is also cyclically

monotone. Indeed, from configuration〈s, [α]⊲⊳p, C〉 whereProbM(s, α) − p = δ
we pass to configuration〈t, [α]⊲⊳p′, C〉 and we know thatProbM(t, α) − p′ = δ.
Hence, if configurations〈s, [α]⊲⊳p1

, C〉 and〈s, [α]⊲⊳p2
, C〉 appear in the same play,

we havep1 ≥ p2.

2. Consider the case whereα = ψ1 Uψ2 andC = C
′ and the strategy is as defined

above. Leti10 be the bound used for choosing the sub-distributiond in configu-
ration〈s, [α]>p1

, C〉. By construction, values smaller thani10 are going to be used
to define the sub-distributions in successor configurations. It follows that if con-
figuration 〈s, [α]>p2

, C〉 is visited, a valuei20 < i10 is going to be used to define
its sub-distribution. From the strictness of the sequenceN t

i (andN s
i ), and as

N s
ij
0

≤ pj < N s
ij
0
+1

, it follows thatp2 < p1.

3. Consider the case whereα = ψ1 Uψ2, α = ψ1 U ≤k; or α = ψ1 W ≤kψ2 and
!C = C

′. Let p′ = ProbM(s′, α) andδi = pi − p′ for i ∈ {1, 2}. Let d be the
distribution suggested by player!C in configuration〈s, [α]⊲⊳p1

, !C〉. By definition
of d, we have

∑

t∈S d(t) ≥ p1. By assumption,〈s, [α]⊲⊳p2
, !C〉 is reachable from

〈s, [α]⊲⊳p1
, !C〉, so both players do not choose to go to configurations of the form

〈t, ψi, !C〉 for i ∈ {1, 2}. If follows that

ProbM(s, α) =
∑

t∈S

P (s, t) · ProbM(t, α)

We know that
∑

t∈S d(t) ≥ p′ + δ1. Then, there must exist somet ∈ S such that

d(t) · P (s, t)−1 ≥ ProbM(t, α) + δ1

It follows that if playerC chooses this statet, the gap between the actual probabil-
ity and the threshold does not decrease. Thusp1 ≤ p2.

4. Consider the case whereα = ψ1 Wψ2 and !C = C
′. Then the proof is sim-

ilar to the previous item. By assumption,C wins from 〈s, [α]≥p1
, !C〉 and hence

s 6∈ [|[α]≥p1
|]M . Let p′ = ProbM(s, α). As playerC wins from 〈s, [α]≥p1

, !C〉,
we conclude thatp′ < p1. In particular,s /∈ [|[ψ1 Wψ2]>p′|]M . Let n ∈ N

be such thatp′ < p + 1/n < p. By Corollary 1, there arek, l ≥ 0 with
s /∈ [|[ψ1 Wψ2]≥p′+1/n|]Ms

k,l
and so the probability ofψ1 Wψ2 in Ms

k,l at s is less
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thanp1. PlayerC is going to use systemMs
k,l to guide her decisions. As usual

ProbMs
k,l

(s, α) is equal to the sum
∑

t∈Sk,l
P (s, t) · ProbMs

k,l
(t, α). Let

p′′ = ProbMs
k,l

(s, α)

As mentionedp′′ < p1. Let δ1 = p1−p
′′ and letd be the distribution suggested by

player!C in configuration〈s, [α]≥p1
, !C〉. By definition ofd, we have

∑

t∈S d(t) ≥
p1 = δ1 + p′′. Then, there must exist somet ∈ S such that

d(t) · P (s, t)−1 ≥ ProbMs
k,l

(t, α) + δ1

Thus, if playerC chooses this statet, the gap between the actual probability in
Ms

k,l and the threshold doesn’t decrease. In Lemma 4 below, we prove that the
probability ofα increases when revisiting the state inMs

k,l. Hence,p2 > p1. 2

Lemma 4 LetM be a labeled Markov chain,q andr in AP, α the path formula
qW r, andMs

k,l given for some states ofM andk, l ∈ N. Lett andt′ be different
states inMs

k,l that both correspond to some states′ ofM such that

• there is a path fromt to t′ in Ms
k,l, and

• q holds throughout the unique and finite path from the root ofMs
k,l to t′.

If we haveProbMs
k
(t, α) < 1, thenProbMs

k
(t′, α) > ProbMs

k
(t, α) follows.

PROOF OFLEMMA 4. As ProbMs
k
(t, qW r) < 1 it follows that there is some

“leaf” t′′ in Ms
k,l that is reachable fromt in Ms

k,l such that the unique finite path
from t to t′′ in Ms

k,l does not satisfyqW r. AsMs
k,l is an unwinding ofM , it fol-

lows that the subtree reachable fromt′ inMs
k,l is contained in the subtree reachable

from t inMs
k,l. Clearly,ProbMs

k,l
(t′, α) ≥ ProbMs

k,l
(t, α). Indeed, if a path satisfies

qW r then every prefix of the path also satisfiesqW r. We use proof by contra-
diction to argue that there is a path fromt that does not satisfyqW r and does not
pass throught′. Assume such a path does not exist. Then every path beginning
in t that does not satisfyqW r has to pass throught′. However, botht andt′ cor-
respond to states′ in M . It follows that the only option to falsifyqW r in game
GM(s′, α) is by “going in a loop” from states′ to itself. But by assumption all
states on the path betweent andt′ satisfyq, a contradiction. 2
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Example 8 The winning strategy for playerR in Example 7 is locally mono-
tone asR never meets a pair of configurations that need to be checked for lo-
cal monotonicity. That strategy is also cyclically monotone: From configuration
〈s0, [qU r]>p, V〉, the only possible cycles lead to configurations〈s0, [qU r]>p′, V〉.
As explained already, Verifier is restricted tod(s2) = 0 and d(s1) < 1/3 or
she loses in the next step. Letp > 1/2 and ǫ = 1/3 − d(s1). Thend(s0) ≥
1/6 + (p− 1/2) + ǫ. Thus,p′ ≥ 1/2 + 3(p− 1/2) + 3ǫ in the next configuration
〈s0, [qU r]>p′, V〉. Asǫ > 0 andp− 1/2 > 0 we havep′ > p. Finally, if p1, p2, . . .
is the sequence of bounds obtained in this manner, thenpi+2 − pi+1 > pi+1 − pi

for all i ≥ 1.

5. Discussion

Table 1 summarizes which PCTL sub-formulae can always be coerced into
finite plays if the winning player plays according to a winning strategy. For ex-
ample, a Strong Until with strict bound is ensured to have a finite strategy and
explore a finite portion of the game before going to sub-formulae, and similarly
from a negated Weak Until with a non-strict bound. To determine whether a PCTL
formula is won by means of such finite plays only, we can eitherconvert it into
“GreaterThan” normal form and check whether each such sub-formula has a nega-
tion polarity that corresponds to the desired player in thattable, or we can con-
vert it into negation normal form and interpret that tableas is on the resulting
sub-formulae. As already discussed, one can change the strictness of a threshold
bound by slightly changing the required probabilities in the formula. Thus, an
ǫ-correction may change a formula that does not allow finite plays to a formula
that does allow finite plays. Note that the operatorX ≥ does not lead to inifinite
plays but may lead to using infinite sets of states.

For example, formulaη = [qU r]>0.999 ∧ ¬[qW r]≥0.9991 is such that playerV
can win be ensuring only finite plays, if she can win at all. Furthermore, if the
Markov chain is infinite, the game explores only a finite portion of it. In future
work, we will demonstrate that this leads to a completeness result for abstraction:
abstractions arefinite-statelabeled Markov chainsA where the labeling function
L has typeL : AP × S → {0, 1,⊥} (instead ofL : AP → P(S)), there is a notion
of satisfaction between PCTL formulae and abstract modelsA, the abstraction
relation(A, a) ≺ (M, s) for countable labeled Markov chainsM is a variant of
Larsen-Skou probabilistic simulation [15]; and “completeness” means if there is
η for which Verifier can force finite plays in allM , thens ∈ [|η|]M implies there is
some abstractionA with statea with (A, a) ≺ (M, s) where(A, a) satisfiesη.

25



Table 1: Sub-formulae that result in finite plays (✓) or don’t (✗), for which winning player; ticks
in parentheses indicate finite plays after an initialǫ-correction of bounds

X > X ≥ W > W ≥ U > U ≥

Verifier ✓ ✗ (✓) ✗ ✗ ✓ ✗ (✓)

Refuter ✗ ✗ ✗ (✓) ✓ ✗ ✗

It is known that these 3-valued labeled Markov chains and probabilistic sim-
ulation cannot render such completeness for all of PCTL [20]. Future work will
therefore also attempt to generalize these abstractions toa kind of tree automata
such that we secure completeness for the entire logic PCTL.

6. Related work

In [6], finite-state (discrete-time) labeled Markov chainsand probabilistic CTL
(PCTL) are considered in their standard semantics, and different forms of evi-
dence are being developed for documenting the falsity of a PCTL formula in a
given state. One form computes those paths that contribute most to the falsity of a
formula. Another form computes most probable sub-trees to gain more precise di-
agnostic evidence. Both forms, studied for Strong and Weak Until, are supported
with shortest-path type algorithms for computing such evidence.

In [2], the line of work from [6] is being pushed into the worldof Markov
decision processes, with a focus on upwards-bounded probability thresholds in
PCTL formulae – whereas we study the downwards-bounded casewithout loss of
generality. The shortest-path algorithms in [2] are then combined with AND/OR
trees in order to filter the computed set of paths to one with high explanatory value,
and to compute the probability of that filtered path set.

In [22], bounded model-checking techniques are applied to the generation of
counter-examples for probabilistic reachability properties. These techniques are
combined with optimizations such as loop-detection to speed up that computation
and to contain the size of these counter-example path sets.

In [8], the soundness of probabilistic counter-examples based on simulation
preorders of [10, 19], represented as finite-state Markov chains, appeals to prop-
erties of the possibly infinitely many concretizations of that finite-state Markov
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chain. An alternative approach is that proposed in [11], where finite, stochastic, 2-
person gamesG are used as abstractions of Markov decision processesM . These
games have a satisfaction relation for PCTL that is sound with respect to abstrac-
tion. Therefore, the winning strategies that witness such satisfactionG |= φ are
guaranteed to transfer into winning strategies that witness the satisfactionM |= φ
for the modelM thatG abstracts. This is an incomplete abstraction method in the
sense discussed in Section 5 of [11].

In [5], a quantitativeµ-calculus with an explicit discount operator, and with
models whose transitions are labeled with discount factorshas non-negative real
numbers as results of model checks. Quantitative parity games are developed and
shown to correspond to model checks for formulae of the quantitativeµ-calculus.
However, winning strategies are no longer memoryless in general as they may
have to “make up” for discount factors encountered en-routein a play – even in
games with finite set of configurations.

In [17], a quantitativeµ-calculus (qMµ) is defined over models that contain
both non-deterministic and probabilistic choice but no discounting. A denota-
tional semantics generalizing Kozen’s familiar one [13] isgiven. For any finite-
state model and formula of qMµ a probabilistic analogue of parity games is given,
the determinacy of this game is shown. It is also proved that its game value equals
that of the denotational semantics for the model and formulain question and that
there exist memoryless winning strategies.

This paper is a journal version of the paper [4].

7. Conclusions

We captured the denotational PCTL semantics over countablylabeled Markov
chains through Hintikka games with Büchi acceptance conditions. This therefore
renders an operational account of truth and falsity of PCTL model checks on such
models in terms of winning strategies for the players Verifier and Refuter (re-
spectively). Game moves depend on the strictness or non-strictness of probability
thresholds for path formulae. Winning strategies may be assumed to be memory-
less and monotone in their choice of structural elements (here sub-distributions).
PCTL formulae in “GreaterThan” normal form that contain Until operators with
a certain combination of threshold type and negation polarity – statically derived
from Table 1 – have winning strategies that may be interpreted as a finitary witness
of the falsity (respectively, truth) of the formula under consideration.
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