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Abstract

Probabilistic model checking is a technique for verifyingether a model such
as a Markov chain satisfies a probabilistic, behavioral eryp- e.g. “with prob-
ability at leas).999, a device will be elected leader.” Such properties are esgare
ible in probabilistic temporal logics, e.g. PCTL, and e#igi algorithms exist for
checking whether these formulae are true or false on fitéeesnodels.

Alas, these algorithms don't supply diagnostic informatfor why a proba-
bilistic property does or does not hold in a given model. Wevgte here complete
and rigorous foundations for such diagnostics in the sgtbincountable labeled
Markov chains and PCTL. For each model and PCTL formula, weé& game
between a Verifier and a Refuter that is won by Verifier if thenfala holds in
the model, and won by Refuter if it doesn’t hold. Games are fpexactly one
player, through monotone strategies that encode the dsdignaformation for
truth and falsity (respectively). These games are infinité \Buchi type accep-
tance conditions where simpler fairness conditions arevahwt be to sufficient.
Verifier can always force finite plays for certain PCTL forrae) suggesting the
existence of finite-state abstractions of models thatfgatisch formulae.

Key words: Markov chains, probabilistic computation tree logic, gaimeory,
fairness conditions, probabilistic evidence

*Corresponding author

Email addresses: echer @ nf or mat i k. uni - f r ei bur g. de (Harald Fecher),
M Hut h@loc. i nperi al . ac. uk (Michael Huth),
Nir.Piterman@loc. i nperi al . ac. uk (Nir Piterman),
dwagner @loc. i nperi al . ac. uk (Daniel Wagner)

Preprint submitted to Performance Evaluation February 2009



2000 MSC60J10 (Markov chains with discrete parameter), 03B44 (twwalp
logic), 91A05 (2-person games), 91A15 (stochastic games)

1. Introduction

Countable labeled Markov chains [12, 3] are an importargscte# stochastic
processes for the modeling of probabilistic systems. Ruitisac Computation
Tree Logic (PCTL) [7] is a probabilistic temporal logic whoformulae¢ can
express practically relevant specifications, e.g. “witblqability at least.999, a
device will be elected leader” — a requirement within a tefemunications stan-
dard such as [1] — can be written asU someleaderElected]>.g99 i PCTL. A
denotational semantids|,, over labeled Markov chaind/ then renders truth or
falsity of ¢, where|¢|,, is the set of states if/ at which¢ is true.

Efficient algorithms exist that compute, over a finite-stiatieeled Markov
chain, the set of states that satisfy a given PCTL formulg. e ones imple-
mented in the probabilistic model checker PRISM [14]). Aafer, however,
may need more information than just knowledge of that sete Jjecifier may
want to understand why a particular state or set of statestefast is in that set,
and any such information may be seen as evidence or diagaos$truth. Equally,
the specifier may be interested in comprehending why a péatistate is not in
that set, and any such information would now be evidencedisity.

We here mean to provide such a mathematical formalism: aggreperational
account of truth and falsity of PCTL formulae, expressed mamner that is ex-
plorable step by step by humans and machines alike. The fisrmave suggest
is that of Hintikka games [9], played between two playersifieerand Refuter,
and their notion of strategy for these players. The appe#thede games is that
truth amounts to the existence of a winning strategy forfi@riwhereas falsity is
captured by the existence of a winning strategy for Refl@ach Hintikka games
for PCTL over labeled Markov chains are meant to establish foundations on
which questions about the existence and computation cafinévidence of truth
and falsity of PCTL formulae can be phrased, studied, anthated.

We now sketch the idea behind Hintikka games for first-ordgid. A Tarskian
notion of truth,=, is a formally defined predicate between models and formulae
of first-order logic and “property is true in model)M” is defined as “predicate
M E ¢ holds”. For example, if\/ is the set of natural numbef{$, 1, ... } and¢
is—dz ((x*z <z +1)A (x> 1)), thenM = ¢ holds since all natural numbers
are either at most or their square is bigger than their successor number.



For modelM and formulag, a Hintikka gameG (M, ¢) involves two players,
Verifier v (who wants to prove that/ satisfiesp) and RefuteR (who wants to
prove that) does not satisfy)). GameG(M, ¢) has as configurations triples
of form (M|% — al,,C) where[Z — a| binds a set of variables; to natural
numbersz;, C is either RefuteRr or Verifier v, v is either¢ or a strict sub-formula
of ¢, and (M, ¢,V) is the initial configuration — saying that claims thate is
true in M, and generates a game tree whose paths are plays — finitsnseque
configurations. Below, we writ& for the player other thag, i.e.!'v = R and
R =V.

For sake of illustration, consider the game for our examplee formulag is a
negation, so the initial configuration héf, v,, R) as sole next configuration for
Yo being3dx ((x xx < x4+ 1) A (z > 1)). (Thus, we just swap the player —f
claims—) then!C claimsy — and remove the negation symbol when processing a
negation.) At configuratiof), 1y, R), the formula is an existential one and so the
player that claims its truth (he® can choose a natural number, $apnd bind it
to x, resulting in the next configuratiof/ [x — 5], 11, R), wherey, is (z x x <
x4+ 1) A (z > 1). (In particular, configuratiod/, v, R) has infinitely many next
configurations, one for each natural numbdyound toz.) That formulay), is a
conjunction claimed to be true &y and so his opponefitcan choose a conjunct.

If Vv chooses conjunct > 1, the next configuration i$M [z — 5|,z > 1,R).
Formulaz > 1 is atomic andr is bound td5 so we simply evaluate this > 1,
which is true. Refuter has won this play. Butlif chooses: x x < x + 1, the
next configuration iSM [z — 5], z x x < x + 1,R) and now Verifier wins since
5%x5 =25 £ 6 = 5+ 1. Finally, if playerv always chooses x x < = + 1
whenevew is greater thani, and chooses > 1 whenevew is at mostl, he wins
all plays in the game tree & (MM, ¢), affirming that is true in M.

To summarize, existential quantifiers in a configurat{d, 3x ¢, C) require
binding its quantified variable to an element of the model, chosen by playkt,
with next configuratiof M [z +— a], 1, C). Negation in a configuratiofiV/, -, C)
determines a swap of players and the removal of the negattbmext configura-
tion (M, «, !C). Conjunction in a configuratiof\/, ¢, A 1, C) means that player
IC chooses a conjungt; for the next configuratiori)M, ¢;, C). Atomic configura-
tions (M, 4, C) are simply evaluated, using the binding information of thedel:
playerC wins if ¢ is true in M, otherwise playelC wins.

Strategies for both players are objects that allow them t&em@ecessary
choices for determining continuation plays. For exampkzjfiér needs to make
choices for existential quantifiers in configurations offiofM, 3x ¢, V), and for
conjunctions in configurations of forfi\/, 1); A 1, R). A strategyo is winning
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for a player if all plays played according to the choices &teby strategy are
won by that player. Since all plays for first-order logic artg, classical game
theory guarantees that gam@é\M, ¢) are determined: exactly one of the two
players has a winning strategy for that game.

It is well known that in ordinary set theory ZF the assumptidrthe Axiom
of Choice is equivalent to that

(Correspondence)‘Verifier wins gameG (M, ¢) if, and only if, pred-
icate M = ¢ holds”.

holds. So one gets an operational and “small-step” accduntth in first-order
logic from the Axiom of Choice.

We here also rely on the Axiom of Choice in provi(@orrespondence)n our
setting of PCTL and countable labeled Markov chains. Thgeddency appears
to vanish for finite-state models and for PCTL formulae whibseshold types and
controlling player satisfy simple consistency conditiaeveloped in this paper.
The latter is of interest sincany PCTL formula can be rewritten with the help
of small perturbations of thresholds that won’t diminisleithpractical value to
specifiers but that establishes, in some cases, said camgrstonditions. For ex-
ample, formulagtt U someLeaderElected]>( 999 and [tt UsomeleaderElected].,
with p = 0.999 — 1~15 have different threshold types (versus>) but the latter
formula may in practice be considered a valid substitutéHerformer one.

Our Hintikka games for PCTL retain the above idea: Verified &efuter
are adversarial players, and both have to make choices ltdresub-formulae
or of structural elements — which for PCTL turn out to ugb-distributionghat
approximate transition distributions in labeled Markowauts.

Outline of paper.In Section 2, we review the familiar denotational semantics
PCTL for countable labeled Markov chains as models, andgeo¥inite-state
approximation lemma for (Strong) Until formulae with notmist thresholds under
that semantics. In Section 3, the game semantics for PCTiLcoumtable labeled
Markov chains is being defined and these games are shown tet&@uned and
to capture precisely the denotational semantics of PCTEeltion 4, we discuss
what structural properties one may assume in winning gfi@sefor our games.
A discussion of the relevance of our results to finding fingpresentations of
winning strategies is contained in Section 5. In Section 6,discuss related
work, and we conclude in Section 7.



¢,7 == PCTL formulae

q Atom o n= Path formulae
—¢ Negation Xo Next
U=y Until

dNY Conjunction

<k .
ol Path Probabiity ¢YW v Weakunti

Figure 1: Syntax of PCTL, wherge AP, k € NU{oo},p € [0,1],andx € {<, <, >, >}

2. Preliminaries

(Countable) Labeled Markov chairdg over a set of atomic propositiodsP
are triples(S, P, L), whereS is a countable set of stateB,: S x S — [0,1] is
a countable stochastic matrix such that the countable sunom@iegative reals
Y e P(s,s") converges td for all s € S, andL: AP — P(S) is a labeling
function whereL(q) is the set of states at which atomic propositiois true. We
say that)M is finitely branching iff for alls € S the set{s’ € S | P(s,s’) > 0}
is finite. A pathr from states in M is an infinite sequence of states; . .. with
sop = s and P(s;,s;11) > 0foralli > 0. ForY C S, we write P(s,Y) as a
shorthand for the (possibly infinite but well defined) sdim, ., P(s, s').

The syntax of PCTL is given in Fig. 1. Path formulaeare wrapping PCTL
formulae into “LTL" operators for Next, (Strong) Until, andeak Until familiar
from linear-time temporal logic [18]. Until formulaé U =¥+ are StrongUntils
since paths that satisfy such a formula have to maintain eeanp invarianto
until they reach a state satisfying and such a state has to be reached within
finite transitions, and also withik transitions ifk # co. Weak Until formulae
oW =ky) are WeakUntils since reaching a state satisfyings optional if¢ is an
invariant on the pathgs; ... s;, which is understood to be whenk = co. The
valuek = oo is being used to express unbounded Untils, whekeadN expresses
a proper step bound on Untils. We writdJ ) as a shorthand fap U =, and
¢ W ) as shorthand fop W =),

Path formulaen are interpreted as predicates = « over pathsr of M.
PCTL formulae¢ are interpreted as subsdis],, of S. The semantics of path
and PCTL formulae is the standard one, given in Fig. 2. Thesoneaspace of
path sets is generated from cylinder path sets in the stdrfdahion [12]. We
thus write Prob,, (s, «) for the probability of the measurable se4th(s, ) of
pathsr = s... with 7 = a. PCTL formulae wrap path formulae with probability
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T = Xo¢iff s €|d|m
T E oUSFyiff IeN: 1 <k&s € |¢far & (VO <5 <l:s5€|d]ar)
T E WSk iff VIEN:0<I<k— (s;€[d]ar) VvV (30< 5 <1:s; € [dlm)

lalar = L(a) [0 AYlar = [olar O [¥]m

[=6lm = S\ ¢lm l[adaplas = {s € S| Probas(s, a) bap}

Figure 2: Semantics = « of path formulae for paths = sgs; ..., and semanticlp|,, of
PCTL formulae:Prob,,(s, o) is probability of sefPath (s, ) of pathsr = s... in M with

T E

thresholds (turning predicates on paths into predicatestates), interpret atoms
according to the labeling functioh, and interpret negation and conjunction as
complement and intersection of predicates (respectivelyje operators V
(disjunction) andy» —  (implication) are derived as(—¢ A =) and—¢ V v,
respectively. Leff be an abbreviation for anyy|~.,, andtt denotes anyo]-o.

Example 1 For labeled Markov chain/ in Fig. 3(a), |[q U r]>1/2]am = {0, 51}
For the labeled Markov chaii/;° in Fig. 3 we have that[¢ W r]>5/9] 1 €quals

{50, 5051, 505151, 5050, S05051, 503050}-

We say that PCTL formulag andt are semantically equivalent iff for all
labeled Markov chaind/ we have|¢[,, = [¢]yn. Each PCTL formulay is
semantically equivalent to a PCTL formula in “GreaterThai@rmal form ob-
tained by replacing all occurrences of the fojam., in ¢ with the PCTL formula
—|a]s,, and by replacing any occurrences of the fge., in ¢ with the PCTL
formula —[a]-,. For example, the “GreaterThan” normal form of the formula

[X[qUr]c1ssl<ipUrlsijais [2[X=[gUr]s1/s]512 Ur)saa.

Assumption 1 (GreaterThan) Without loss of generality, PCTL of Fig. 1 is re-
strictedtor € {>, >}.

We now state and prove a finite-state approximation lemmahervalidity of
Until formulae with non-strict probability thresholds aages of labeled Markov



Figure 3: Labeled Markov chail/ with so € [[q U7]>1/2]ar, SinceProbas (so,qUr) = 1/2

chains. This lemma will be crucial in proving that our gammaatics of PCTL,
developed in Section 3, captures exactly the denotati@mahstics in Fig. 2.

Definition 1 (Finite Unfoldings) Let M = (S, P, L) be a labeled Markov chain.
Foreachi € Nands, € S we define the labeled Markov chaiy® = (.S;, P;, L;),

a random tree with rook,: unfold M from s, as a full tree of depth, where
edges have positive probability according & This may duplicate states but
such duplicates will satisfy the same atomic propositiddtates at level have
a self-loop with probabilityl. The probability measureB(s, -) at levels< i are
those in)M. For each; € N we restrict)/;° to the finite-branching, and so finite-
state, labeled Markov chaif/;’; = (S ;, P j, L ;) with one additional stateésink
which satisfiest but no otherq € AP: For eachs € S;, lett,t,,... be an
enumeration of ¢, € S; | P(s,tx) > 0} such thatP(s,t;) > P(s,tx1) for all

k € N. ThenP,; is obtained frompP; by settingP; ; (s, t,) = P;(s, ;) for k < j,
P, i(s,tsink) = 1 — > 7 _, Pij(s,tx) and P, ;(tsink, tsink) = 1; State setS; ; con-
sists of those reachable frony, via P, ;, and L, ; is L; restricted to setS; ; and
extended to the new staig.

Example 2 Fig. 3(b) shows unfolding/;° for labeled Markov chai/ of Fig. 3(a).

Lemma 1 (Finite-State Approximation) Let ¢, € AP andp € [0, 1] for la-



beled Markov chain/ = (S, P, L). Thens € |[qUr]|s,]a iff for all n € N there
arek,l € Nwiths € [[qUr]sp1/n]ns -

PROOF OFLEMMA 1. Consider first the case thaf is finitely branching. Recall
thatPath(s, ¢ Ur) denotes the set of paths beginningsithat satisfyg U r. Let
Path;(s,qUr) be Path(s, (¢U="r) A A\, ; 7(¢U='r)), i.e., paths in whicly
holds until locatiori wherer holds and- does not hold in locations smaller than
i. We setPathy(s,qUr) to bePath(s,qU="r), i.e. the sef{r = sq--- | s =
So, So € L(r)}

For the “if” part, assume that for alb € N there isk > 0 such thats €
llgUr]sp-1/nlas:- Then,s € [[qUr]s,-1/n]as follows by the monotonicity of the
denotational semantics for “GreaterThan” thresholds.sThis in the intersection
MuenllgUr]sp1/n[ar which equalglg U], [a-

For the “only if” part, let s € [[¢Ur|s,[m andn € N. It suffices to
find somek > 0 with s € [[gUr]s, 1/n]n:. As Pathi(s,qUr) is of form
Path (s, «) for a path formulay, that set of paths is measurable. Forig#l j note
that setsPath;(s,qUr) andPath;(s, ¢ Ur) are disjoint. SincéPath(s,qUr) =
;> Path;(s,¢Ur) and as the latter is a disjoint union, we know that

Probs(s, Path(s,qUr)) = Z Probyy (s, Path;(s,qUr))

120

By definition of convergence for that infinite sum, for every= N there exists
k > 0 such that

k
> " Proby(s, Path(s,qUr)) > Proby (s, Path(s,qUr)) — 1/n
=0

As S Proby(s, Path;(s, g U)) equalsProby,: (s, ¢ U r) we obtain that is in
llgUr]sp-1/n]r; @and we are done.

As M is finitely branching, there exists an upper bounoh the branching
degree for all states in/;. It follows thatProby:(s,qUr) = Proby: (s,qUr).

For infinite branchingM the proof is similar. We have to be more careful
in noticing that every path sdtath,(s,qUr) is still measurable and have to be
careful in the way in which we sum up the probability of the Beth(s,q U r).
But this works out since all infinite sums have absolute cayemce, establishing
that for some: we haves € |[qU r]>p_1/n|]M;. The existence ob/;;, as required
follows from convergence d?roby; (s, qUr) to Proba (s, ¢ Ur). O



Example 3 Consider the labeled Markov chain in Fig. 3(é)roby(sg,qUr) =
1/2 is attained by paths of increasing length, as the value ofitfiaite sum
> =,(1/3)7. Butforalln € Nthereisi € Nsuchthaty ', (1/3)’ > 1/2—1/n
and where that finite sum is attainable in a finite unfolding\of For example,
for MZ5° in Fig. 3 the probability of; U r at s is § so for everyn < 18 we have
so € laUr]s1jo-1/n[pgz0. In Mj° the probability ofg Ur at s is 2 and so for
everyn < 54 we havesy € [[pUg]>i/2-1/n[p0. Lemma 1 promises a similar
approximation for every (countable) labeled Markov chain.

Lemma 1 has a dual version, required in the proof of Theoreml@

Corollary 1 For labeled Markov chaif = (S, P, L), ¢, € AP, andp € [0, 1]:
s & lqWr]sp|n iffforall n € Nthere arek, | € Nwiths & [[gWr]>p1/n]ne -

PROOF OFCOROLLARY 1. s & |[gWr]s,[ar iff s € [[-1U (=g A =r)]s1-p]a,
asqWr = =(—rU(—¢ A —r)). By Lemma 1, for alln € N there arek,l € N
with s € [[-r U (=g A =7r)]>1-p-1/nlagg - Thus,s & [[gWrlspia/mlag - O

3. Game semantics

Let M = (S, P, L) be a labeled Markov chain over set of atomic propositions
AP. For each state € S and PCTL formulap we define a 2-person Hintikka
gameG, (s, ¢). As already mentioned, these games are played betweenéyo pl
ersV (the Verifier) andk (the Refuter). As before, we |8 =R and!R = V.

After having defined these games and their winning condstiore show that
each gamés (s, ¢) is won by player iff s € [¢[,; and won by player iff
s & o[- In particular, each gamé,, (s, ¢) is determinedexactly one of the
playersv andr wins that game. The gante (s, ¢) has as set of configurations

Char(s,¢) = {(s',4,C) | s" € 5, ¢ € c(9), C € {R, V}}

where we define the set of PCTL formuleéy), theclosure ofg, in Fig. 4. This
set merely delineates the universe of PCTL formutaeich that all configurations
(t,1,C) reachable in gamé,, (s, ¢) satisfyy € cl(¢). Setcli(¢) is part of the
closure as familiar from first-order logic. Set(¢) is specific to PCTL and will
be discussed implicitly in game moves for clalsh Probabilityof PCTL. The
intuition behind a configuratioty, ¢, C) is that playerC claims (or has the burden
of proof) thaty holds in state.



Setcli(¢) is the actual set of sub-PCTL-formulae @fincluding ¢ itself. Setcly (o)
consists of all formulago],,, such that either

(@) aistpy Uiy, ais >, p € [0,1], and><d € {>,>} with [a].y, € cli(0),
(b) aisyy Waps,pais >, p € [0,1], and>d’ € {>, >} with [y, € cli(9),
(€) aisthy USFyhg, p € [0,1], andoo > k > k' with [t U ZFehs]y, € cli(6),
(d) aishy W=Fhy, p € [0,1], andoo > k > ' with [1hy U ZFeh]y, € cly(¢)

Figure 4: Closurel(¢) = cli1(¢) U cla(¢) of ¢ satsifying an invariant: For all configuration
(t,,C) reachable in gamé,, (s, ¢), formulay is in cl(¢)

U7y

Definition 2 1. The moves of gantg, (sy, ¢) are defined by structural induc-
tion onvy € cl(¢), simultaneously for alk € S, in Fig. 5.

2. Aplay inGy(so, ¢) is an element ofCf (s, )" U Cfar(s, ¢)* beginning
in (so, ¢, V), where next configurations are determined as in Fig. 5.

The intuition behind the moves is as follows. In move M1, amyrfula[a]-
is made semantically equivalentfftovhereas move M2 encodes that any formula
[a]>o is semantically equivalent ta.

Assumption 2 By nature of the moves M1 and M2, moves to configurations of
form (s, [a]sp, C) Never satisfy thak p equals> 0 or > 1.

In move M3, the winner of configurations, q, C) is determined according
to whether atomy is true at state. The moves M4 and M5 are basically those
familiar from first-order logic for negation and conjunati¢respectively).

In order to handle more complex operators we have to devige gmmplex
moves. In games for branching-time logics such as CTL ontualculus (see
e.g. [21]), the universal quantification X ¢ (“at all next states;) holds”) is
resolved by Refuter’s choice of a successor state; and theeakal quantification
in 3X ¢ (“at some next statey holds”) is resolved by Verifier supplying one
successor state, both as familiar from the case of quastifiefirst-order logic.
For the next operator in PCTL, however, things are more caraggd as reflected
in move M6. The next operatdX ¢|., includes a promised probability p, “at
leastp” or “more thanp”. At configuration (s, [ X ¢].,, C) of move M6, playeC
chooses a subsét of {s' € S | P(s,s") > 0} satisfyingP(s,Y’) > p. (If she
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M1 At configurations(s, [a]-1, C), player!C wins

M2 At configurations(s, [a]>0, C), playerC wins

M3 At configurations(s, q,C): playerC wins if s € L(q); player!C wins if s ¢
L(q)

M4 At configuration(s, —, C), the next configuration iés, v, IC)

M5 At configuration(s, 11 A 12, C), player!C chooses € {1, 2}, next configura-
tion is (s, 15, C)

M6 At configuration (s, [ X ¢].,C), playerC chooses a subsét C {s' € S |
P(s,s") > 0} satisfying P(s,Y") > p; then playerlC chooses somg € Y/,
next configuration igs’, ¢, C)

M7 At configuration(s, [¢1 U ¢2]>p, C), player!C chooses some € N such that
p — 1/n > 0 with resulting next configuratiofs, [¢)1 U ¢2]~p,—1/y,C)

M8 Dually, at configuratior{s, [y W 12]-,, C), now playerC chooses: € N such
thatp + 1/n < 1 with resulting next configuratios, [v)1 W 2] >, 41/n, C)

M9 At configuration(s, [&]sp, C) Where eitherw is ¢ Ui ande<is >; or acis
11 Why andrx is >

— playerc is able to move to next configuratign, v, C)

— if player C didn't move, player!C can move to next configuratior]
<87 1, C>

— if neither player moved above, the play must proceed asvistid’layer
C chooses a sub-distributioft S — [0, 1] such that

dd(s)>0 & > d(s)=p & Vs e€S:d(s) < P(s,s)
s'es s'es (1)

Next, player!C chooses some staté € S with d(s’) > 0 and the next
configuration is(s’, []sqq(s'). p(s,s') -1 C)-
M10 At configuration(s, [a]s,, C) wherea is vy U <Fpy or iy W =kepy with k& € N:
— if k = 0 anda is ¥y U <F4)y, the next configuration iss, 5, C)
— if k = 0 anda is ¢ W =Fq),, playerC chooses as next configuratio
either (s, 11, C) or (s, 19, C)
—if £k > 0, the moves are defined as in M9, except in the last ite
where nowk in « is decreased t& — 1 for that next configuration

<8/7 [a]md(s’}P(s,s’)*l ’ C>

Figure 5: Moves of gamé€,, (s, ¢)

lm,
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can't find such a set, she loses the play.) The implicit clafir@ is thaty) holds at
all states ofY’, and so this move acts like a universal quantification butaver
all elements but over enough to make the probabilities addTine other player
IC then chooses an elemerifrom Y and the next configuration ig’, ¢, C). (By
Assumption 2, playe€ does not have the option of choosing= {}.)

This leaves us with explaining and motivating the movesfbeing the Weak
or Strong Until. Inqualitativegames, Until operators are resolved by using the
logical equivalencg Ur = r V (¢ A X(¢Ur)) — and similarly for Weak Until
operators. The only problem in adopting this for PCTL is ia gossibility of de-
ferring promises forever. For games in qualitative setitigs is typically handled
by fairness, but for PCTL fairness is not strong enough:

Example 4 PCTL formulalq U |-/, holds at states, in the labeled Markov
chain of Fig. 3(a). But we have to appeal to the entire infisiien) > (1/3)" for
proving this. Any fairness constraint forcing a transitilsom s, into {s;, s, } cuts
that infinite sum down to a finite one, failing to prove thanfoita for states.

However, allowing to defer the satisfaction of the Strondilindefinitely is
unsound. The PCTL formula U r|. 5 does not hold at, but allowing Verifier
to delay promises forever may be unsound, e.g., Verifiedcawpply the promise
1/3 immediately, promising more thdn6 in the future, and then — by deferring
the promise indefinitely — Verifier could win gag (so, [¢ U r|so5)-

To address this problem we add a speeialove as well as acceptance condi-
tions for infinite plays. If the probability is at least playerC (who claims this)
should be able to prove that it is greater than ¢ for everye > 0. On the other
hand, if the probability is strictly less thanthen there exists anfor which it is
less tharp — ¢; and playetC does not lose ground by giving up anThus, player
IC chooses the and playec proves in finite time (appealing to Lemma 1) that she
can get as close as needed to the bound. The same intuitiodu@®y works for
WeakUntil, when the Weak Until formula in question doest hold. This follows
from the semantic equivalene€¢ U ) = (—¢) W (—¢ A —)) of path formulae.

In move M7, playetC makes such an= 1/n move and the next configuration
is the original one except that the threshold changes fromto > p — 1/n.
Player!C can indeed choose such arsincep cannot b&). The intuition is that
[p, 1] = N,en(® — 1/n, 1] so this behaves like aniversalquantification.

In move M8, playerC' can choose such am sincep < 1. The intuition
is that a Weak Until with a> threshold is the dual of a Strong Until withZa
threshold (based on(pUy) = (=) W (=¢ A 1)), so it is like anexistential
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guantification. The next configuration is the original one€aept the threshold
changes from> pto > p+ 1/n.

Move M9 is the most complex one. At configuratio o)., C), playerC
can claim that), is true. If she does not do this, playercan claim that), is
not true. If none of these happen, plagehas to chose a structural element of
the model, a sub-distributiahof P(s, -) that has positive mass, approximates the
probability distributionP(s, -), and specifies the re-distribution of promisep
into promised probabilities at successor states. Silie§ > 0, we also have
0 < d(s) - P(s,s')"" < 1 in the next configuratiols’, [a}.q(s').p(s,s')~1, C) Of
move M9 by (1). The promised probability at a next configunativith states’ is
given byd(s’), divided by the actual transition probabilify(s, s').

Move M10 behaves like move M9 excect that a Bounded Until wabnd0
has to realize), right away; a Bounded Weak Until with bound zero has to realiz
at least one of); or i, right away; and theé is decreased tb — 1 in « if the next
configuration does not have a proper sub-formula ¢ consider.

In most moves, plays either end or move to configurations witper sub-
formula in the closure. In a configuration with Strong Untitvnon-strict bound
or Weak Until with strict bound, the next configuration chaadgrom non-strict to
strict bound or vice versa. In a configuration with Strong iUnith strict bound
or Weak Until with non-strict bound, the next configuratioashthe same path
formula and threshold type, or has a proper sub-formula.

Thus, all infinite plays end with an infinite suffix of configticans that are

ALl. all of the form(s;, [1)1 W 1)2]>p,,C) or A2. all of the form(s;, [¢1 U ¢a]~p,, C)

Configurations of these suffixes are either labeled by Sttdmig with strict
bound or Weak Until with non-strict bound, where the states the exact proba-
bility bound may still change, but where neither the playeaor the sub-formulae
11 andy, change.

Definition 3 (Acceptance conditions) 1. Playerv wins all infinite plays with
an infinite suffix either of type Al above with= V, or of type A2 above with
C = R. PlayerR wins all other infinite plays: those with an infinite suffixheit of
type A1 wherg = R, or of type A2 wheg = V.

2. Finite plays are won as stipulated in Fig. 5. In particyldi@a player has to
make a choice and cannot do so, the other player wins that play

These are Biichi type acceptance conditions, and so ourggarae&known to be
determined [16]. We use the notion of strategy for playarformally. But such
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strategies contain, for each configuration of a game, at omestset of choices as
required by the applicable move from M1-M10.

Example 5 We describe a winning strategy for playein gameGy,(so, [a]>1/2)
for M asin Fig. 3(a) andv = ¢ Ur. The initial configurationigsg, [a]>1/2, V). In
the first move, playek chooses:. € N with next configurationsy, [a]~1/2-1/n, V).
Then, as long as the play,I'; ... remains in configurations’; of the form
(50, [@]>p;» V), playerV is going to choose the sub-distributiahwith constant
valuesd(s;) = 0 andd(s;) = 5 — 5=, and dynamic valué(s,) = p; — d(s1).
A simple calculation shows that as long as plageshooses;, as the next state
(clearly, if she chooses, she is going to lose ag € L(r)) the promised proba-
bility > p, is going to decrease according to the following sequepge= % — %
pm=i—2,pp=13—2L,p3=1—12 andingenerap, = 1 — £ fori e N.
Whenevep, decreases beI0\§/ (and there is somée N for which this happens),
playerV still chooses! with d(s,) = 0 as above but now defindés,) = p; and

d(so) = 0, thereby forcing player to move tos; and lose.

Example 6 Although the choice af in Example 5 may seem arbitrary, it meshes
well with the use of Lemma 1. Consider again the game from gbkain Suppose
playerR choose$ € N in the first move, with next configuratidsy, [a]-7/1s, V).
Since for theM," in Fig. 3, Prob,,«o(so,a) = § > {5, playerv can useM,"

to guide her choices. 18/3°, Prob,s (sos1,a) = 1 andProb, s (seso, @) = 3.
Player Vv uses the gap 01‘1§ and re-distributes it between the successorsqof
She can choose, for examplfs;) = 5 — =; andd(sg) = § — ;- The next
possible configurations are theR,, [a]-17/15, V) and (so, [a]>5/1s, V). Playerv
identifies the resulting states with those obtained/jt, heresys; andsysg (re-
spectively). Asys; € I]Tﬂjugo the first is clearly a winning configuration. From
(s0, [a]>5,18, V) and the corresponding location s, in M5°, playerV notices that
Prob,s0 (sosos1, &) = 1 and choosesl(s;) = 5/18. The next configuration is

(51, [a]>15/18, V) (with correspondingsgsgs; in A/5°) and won by supplying.

We define winning strategies and use them to define which plaiys a game.

Definition 4 1. A strategy for playerC in gameG,, (s, ¢) is winning from a
configurationl” in that game iff playec wins all plays beginning in config-
urationI” when playerC plays according to his strategy.

2. PlayerC wins Gy, (s, ¢) iff player C has a winning strategy frorts, ¢, V).
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We can now formalize our main result that the denotationalsdics of PCTL
is captured exactly by the existence of winning strategiegimes: (s, ¢).

Theorem 2 Let M = (S, P, L) be alabeled Markov chain ovéP, s € S, and¢
a PCTL formula. Thenr € |¢|, iff player Vv wins gameG,, (s, ¢); and s & [o[ar
iff playerR wins gameG,, (s, ¢). In particular, gameG,, (s, ¢) is determined.

PROOF OFTHEOREM 2. Given PCTL formulap, both “iff” claims are shown by
structural induction on PCTL formulag in the closure ofp, simultaneously on
all states ofM. As exactly one ok € [¢], ands ¢ |¢]a holds, it suffices to
show both “iff” claims in Theorem 2 for such in their “only if” versions, which
consists of six cases. We prove only the most interesting lcare, whe equals
[y Where either

(@) aisyy Uy, andis >
(b) ais; Wahy ande<is > or

(€) aisy U=Fepy or ey W =Fepy with k € N andix is either> or >:

(All other cases follow a routine argument.) We show for latee cases above
that (#1) s € o[ implies playerv wins gameG,,(s, ¢) and (#2) s ¢ o[
implies playeR wins gameG,, (s, ¢).

(#1) First, lets € [¢]x. The formulax is logically equivalent ta), V (11 A
X«) and, in case that is bounded, the bound decreaseslbylt follows that
it is either the case that € i Or s € |1 A[Xa]sp]ar. In the first case,
playerv chooses to move to configurati@s, v, V) and by induction she has a
winning strategy from this configuration. In the second céseinduction there
is a winning strategy for playev from configuration(s, ¢, V), so if playerR
chooses to go to this configuration, playewins. If playerR does not move to
11, then M9 demands that play&rchooses a sub-distributiah : S — [0, 1]
satisfying (1). By assumptiofn € |[ X |- LetT be the set of statessuch
that Prob,,(t,a) > 0 and P(s,t) > 0. We choosel such thail(s") = 0 for alll
seS\T.

So it suffices to specify on setl’. Forthat, lep’ = >, . P(s,t)-Proby(t, a).
Consider the case that< is >. By assumption’ > p. In the case that = 0, we
choose some statec 7" such thaProby,(t,a) > 0, we setd(t) = Proby(t, ) -
P(s,t), andd(t') = 0 for all ¢ # t¢. In the case that > 0, let § bep’ — p.
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We are going to distribute this gapbetween all the states ifi according to the
distributionP(s, -). That s, for allt € T

d(t) = max(0, (Proby(t, ) — &) - P(s,1))

In case thaProb,,(t, o) < § we thus havel(t) = 0 (and so effectively remove
from setT” above). Ay’ = >, o Proby(t, ) - P(s,t) andp > 0 there must be
at least one statesuch thatProb,, (¢, «) > p’ and hencéroby,(t,a) — 6 > 0,
implying d(t) > 0. It follows that) ", . d(t) > p' — d > p.
Consider the case that< is >. By assumption’ > p. Letd bep’ — p. For all
teT,let

d(t) = max(0, Proby(t,a)) — 6 - P(s,t))

If Proby(t,a) < 4, setd(t) = 0. This completes the specification of sub-
distributiond chosen by playev.

Now regardless of the choice of playrerthe next configuration i§, [a]., V)
such that € |[aw,y[a- SO playen maintains the truth value of the configuration.
Notice that also the distance from the promised bopirehd the real probability
is being maintained.

Case (a):For (Strong) Until, we appeal to Lemma 1. We treat sub-foameuj,
andi), as propositions (respectively, thandr in that lemma) and annotate states
of M by, andy,. Letp’ = Proby,(s, 1 U1y). By assumptiop’ > p. In partic-
ular,s € [[1 Uts]sy |m- Letn € Nbe suchthap’ > p'—1/n > p. By Lemma l
(applied top' instead ofy), there arek, [ > 0 with s € [[1)1 U )5y 1/n]asz, @nd
so the probability of/; Uy, in My, ats is greater thap. Playerv’s strategy is to
consider this system/;; ;. She chooses sub-distributions S — 0, 1] according
to the probab|I|t|e$?rosz (t,«) (instead oProb,, (¢, o) but as explained above).
By definition of M/}, there can be only finite sequences of configurations of the
form (s, [a]~,, V), and so playey wins (cf. Example 6).

Case (b):For Weak Untilyy W 14, all infinite plays have a suffix of configu-
rations of form(s’, [y W v»]>,, V) and are thus winning for play&t Finite plays
again reach configurations of the for{#, «;, V) for i € {1, 2}, where induction
applies directly.

Case (c):For bounded operators, as the bound decreases, in a finiteenuain
steps the play moves to configurations of the faeme;, v) fori € {1,2}, where
induction applies directly, and in the desired manner.

(#2) Let s ¢ [¢]ar. It follows that Proby(s,«) < pin case that< is >;
andProby,(s,a) < pin case that< is >. As above, is logically equivalent
to ¢ V (1 A Xa) and in case that is bounded the bound decreases lby
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It follows that s ¢ [i»]y and hence there is a winning strategy for plager
from configuration(s, 15, V). Also, it is either the case that¢ [y [y or s &
[ X a]splar- In the first case, playey has a winning strategy from configuration
(s,11,V) and chooses this configuration. In the second case, plagkooses a
sub-distributiond: S — [0, 1] such that (1) hold.

We claim that there is som€ € S with d(s') > 0 and Proby (s, «) 54
d(s") - P(s,s')"'. Proof by contradiction: otherwis®rob,,(s’,a) > d(s") for
all s" with d(s") > 0 implies that) ;.o Probas(s', a) >3- cqd(s’) = p
by (1). But this render$_ - Proba(s’, ) > p which directly contradicts
s € |[Xalwp|am. Thus, playeRr can choose such ath and maintain the play in
configurations of the form{s’, [a].,, V) such thats’ ¢ |[a].,[r. Notice that
playerk can choose a successosuch that

p' — Proby(s', &) > p — Proby(s, @)

i.e., the gap between the promise and the actual probabdig not decrease.

We now study the consequences of this capability of playfer the different
forms of path formulax:

Case (a): For Weak Until formulae, we appeal to Corollary 1. As before,
we treaty; and, as propositions and annotate statesibby them. Lety’ =
Probys (s, 1 W1b,). By assumption’ < p. In particular,s ¢ [[t)1 W ¢s]<p | ar-
Letn € N be such thap’ < p + 1/n < p. By Corollary 1, there aré, ! > 0 with
s & [[vn ng]zpu,l/nﬂM;J and so the probability of, W, in M, at s is less
thanp. Playerr’s strategy is to consider this systehfi; ;. Letd: S — [0,1] be
the sub-distribution chosen by playerAs s ¢ [[v1 W ¢a]>, [, there is some
s’ € Ssuch thats’ & [[v1 W a]>q(s).p(s,0)-1 |1 ,- SO playerr chooses this'.

By definition of M} ,, there can be only finite sequences of configurations of form
(s, [a]>p, V), and so player wins. This is dual to the strategy depicted foin
Example 6.

Case (b):For (Strong) Until formulae, infinite plays of configurat®of the
form (s', 1 U 1]y, V) are winning for player by the winning conditions for
infinite plays. Any finite play reduces to configurations o form (s’, ¢;, V) for
i € {1,2}, where induction applies directly, and in the desired manne

Case (c):For bounded operators, as the bound decreases, in a finiteanum
of steps the play moves to configurations of the fden);, V) for i € {1,2} and
so playemR wins by induction. O

In gameG,, (s, ¢), playerv owns initial configuration(s, ¢, V). For a dual
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game, with the same moves but with initial configurat{eny, R), Theorem 2 and
its proof then remain to be valid if we swap the role of playiarboth.

Example 7 Consider gamés (o, [¢ U r]~1/2), whereM is as in Fig. 3(a), and
letor = ¢ Ur. From configuration(sy, [a]1/2, V), playerv won’t move ta(sg, r, V)
as she would then lose. For the same reason, playeon't move tg(s, ¢, V). So
if both players play strategies that are “optimal” for theplayerv has to choose
a sub-distributiond at the initial configuration.

If d(s2) > 0, playerV loses as player can then choose;. Sod(sy) = 0
for any “optimal” strategy of playerv. But bothd(s;) and d(sy) have to be
positive since otherwise the massdofan be at most/3 by (1), which would
violate (1). Since player plays an “optimal” strategy(s,) # 1/3, as otherwise
player R could choose as next configuratidsy, (|- /3).(1/3-1,V) and would
then win by move M1. By (1), there is therefere 0 such thatd(s;) = 1/3 —e.

In particular, playerR won't chooses; as she would lose the next configuration
(s1,|a]=1-3¢, V) (sinces; € L(r)). So playemR chooses;, and the next configu-
ration is (so, [a]>34(s0), V). BY (1),3d(s9) must be at least/2 + 3¢ and so player

V promisesnorein > 3d(sq) than she promised in the previous configuration.

At configuration(sy, [o]>34(s,), V), playerv avoids losing only by choosing a
sub-distributiond that mapss, to 0 and all other states to positive mass as before,
and for the same reasons. Similadys,) < 1/3 has to hold. So although a new
functiond with a new value o may be chosen, the next configuration is still of
the same typés, [a]-,/, V) with p’ > 1/2. Thus, either the play is finite and so
lost for playerv as described above; or the play is infinite and so lost for ptay
V by the acceptance conditions Al on infinite plays.

We conclude that play@& wins that game. A winning strategy for her from the
initial configuration only needs to be specified for move M9:

e playerR will never choose a configuration of forsy, ¢, V), should such an
opportunity arise

e whenever playey chooses sub-distributiohwith d(s2) > 0, playerR will
chooses,

e otherwise, it must be the case that belfs;) and d(s,) are positive; if
d(s1) > 1/3, playerk chooses;

e if d(s1) < 1/3, playerR chooses;,
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4. Winning strategies

We show that when a player can win gaiig (s, ¢) she can use winning
strategies that are of a very specific type. In addition tadppenemoryless in the
classical sense, these winning strategies choose veppsted distributions when
re-visiting a state in a configuration with a Strong or Weakilbperator.

As before, we use the notion of strategy informally. A stggtes memoryless
if the choices of its player depend solely on the current gométion, not on
the finite history of configurations that preceded the curere in a play. In
our games, there can be configurations of typga|.,, C) for the same state
s and the same path formula (e.g., 1)1 U ) but with different bounds< p.
We show that it is enough to consider winning strategies Wwimcuce bounds
that change monotonically, as defined below. Subsequéatigub-distributions
d,d": S —|0,1], we write

o d < diffforall s €S wehaved(s) <d(s)
o d' < diff d <dandd'(s) < d(s) for somes € S

For alocally monotonestrategy the choice of sub-distributiamat configuration
(s, [@]sp, C) Is monotone inx p, regardless of the history of a play.

Definition 5 (Locally Monotone Strategies) Strategy for playercC in Gy, (s, ¢)

is locally monotoneff for all configurations(s, [@]s,, C) and (s, [, C) that
occur in plays consistent with (but not necessarily in the same play), whére
andd’ are the sub-distributions chosen accordingtat these two configurations
(respectively), thep > p' impliesd > d' andp > p’ impliesd > d'.

A cyclically monotonestrategy is monotone on cyclic paths within single
plays: its player can force a decrease or increase of thaltblegs depending
on the path formula and on whether it i¥ @r R configuration.

Definition 6 (Cyclically Monotone Strategies) A strategy for playerC in game
G (s, ¢) is cyclically monotondff for any two configurationss, [¢].,, C’) and
(s, [a]sy, C") that occur in this order on some play consistent withthen

o =1 Uy andCc = Implyp’ <Dp,
o (= ¢1W¢2 andC =’ Implyp’ <np,

e a =1 Uysand!C=C implyp > p,
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e a =1 Wiyand!C =C implyp > p.

The existence of winning strategies implies the existeegmmning strategies
that are locally monotone and cyclically monotone.

Theorem 3 For every gameés (s, ¢), there exists a winning strategy for player
C iff there exists a memoryless winning strategy for playénat is also locally
monotone and cyclically monotone.

PROOF OFTHEOREM 3. Assuming that there exists some winning strategy for
playerC in gameGj,(s, ¢), it suffices to show that a slight modification of the
winning strategy synthesized in the proof of Theorem 2 is mtess, locally
monotone, and cyclically monotone. That slightly modifiechtegy will clearly

be memoryless by construction. We now describe this modifieding strategy
and first prove its local monotonicity, by induction as in greof of Theorem 2.
Then we prove that it is cyclically monotone.

Modified winning strategy and its local monotonicifijhe only configurations
where playeiC needs to make choices are of fofm [au,, C'), (5,11 V s, C),
and(s, 1y A1y, IC).

With the latter two, we restrict’s strategy to choose; whenever possible
and, only when impossible, to chooge. This is similar to what one can do in
Hintikka games for first-order logic. We show that the way fogurations of the
form (s, [o].,, C') are handled induces a memoryless and monotone strategy.

If « = X4, then the strategy defined in the proof of Theorem 2 chooses th
set of successors according to the statend is clearly memoryless.

If IC = C"and eitherx = 11 Uy ands = >; ora = ¢y Wip, ands = >,
then playerC has to choose a value € N. By choosing the minimal possibte
she ensures that the strategy is memoryless.

Consider two configuration&, [au, . C') and (s, [a]wp,, C'). Whenever the
play moves to configurations of the fors', ¢;, C') for i € {1, 2}, the strategy is
memoryless, locally monotone, and cyclically monotonermuction. We start
with proving local monotonicity for moves that may choose-slistributions.

1. For configurations where = ¢, Wby, a = 10y W =Fah,, or a = 1)y U Sk,
andC = C’ we claim that the strategy composed in the proof of Theorem 2 i
locally monotone by induction. Intuitively, this can be sd® the strategy using
the gapd between the probability of the formula and the requiredshadd. The

20



strategy partitions this gap between all successors, s®wifame state is visited
with different thresholds, the partition of the gap implikat the distribution does
not increase.

Letp’ = Proby,(s,a) andd; = p' — p; for i € {1,2}. According to the proof
of Theorem 2 in configuratiofs, [¢].,,, C) playerc chooses the distribution

d;(t) = max(0, (Proby/(t, ) — &;) - P(s,1))

It follows that if p; > po, then for everyt € S we haved, (t) > da(t). If follows
that if p; = po, thend; = d,. Consider the case that > p,. Thenp; > 0 and
for somet we haved;(t) > 0 andd;(t) = Proby(t,a) — 6;. Asd; < 0, and
dy(t) = Proby(t, ) — 4 it follows thatd, (t) > da(t).

2. For the case whera = ; Uy, andC = C/, the strategy as defined in the
proof of Theorem 2 is not locally monotone. We modify it adduwis: For every
configuration(s, [¢; U ], C) the sub-distributionl is chosen according to the
minimal & such that some fraction cﬁrob]vfg(s, «) is greater thamp. The exact
definition of this fraction is given below. Furthermore, weeuthe gap between
ProbMi(s, a) and PrObMi_l(sv «) to ensure local (and later cyclic) monotonicity.
The definition of the sub-distributialhand the proof itself are quite technical.

Consider the configuratios, [a]-,, C). We assume, without loss of general-
ity, thats ¢ [ ]r. We measure the exact probability to satigfyvithin i steps.
For everyt € S let

ng = Prob(t, @) n; = Proby:(t,a) — Probye (t,a) (i >0)

Consider the following increasing sequence:

) |§”

t__ t _ nTt ( 1 t
Ny = Ny =N+ ijo PESERL

o (i>0)

ThatISNt = 3nf + Inf, Ni = Inb 4 3ni + nb, N§ = 2nb + Inl 4 3nb +
—nl, and so on Notlce thatm; .., NV} PrOb]wt (t, ). Let 1o be minimal such
that)", o N - P(s,t) > p. By abuse of notation for > 0, we write N7, | =
> e NI P(s,t). Thatis,N; is the sum of the differen¥/_, normalized by their
probabilities to get frons to ¢. To simplify notations, foi < 0 and for allt we set
N} = N;,, = 0. The valueN;, - P(s,t) is going to be the basis for defininigt).
Notice that it must be the case théif < p and thatV; — N} _, > 0. In order to

maintain local monotonicity we distribute the gap betwdmnrtequwed threshold
p and N7 between all the statedswhere N} ., > 0. We have to be extremely
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careful with the states for which N = p. For these states, we take a constant
fraction of N} — N} _, and distribute it among the successbor§Ve then have to
scale the diStl’IbutIOld for all statess for which this constant fraction surpasses
the required bound.

We setd(t) as follows:

1 3 p—N?
d(t N} —— 0 Nt N! - P(s,t
( ) ( 10— 1 _'_ <4 _'_ 4NZS +1 NZSO) ( 10— 1)) (87 )

It is simple to see tha} |, . d(t) > p. Indeed,), ¢ d(t) is the sum of the
following three expressions:

Z io—1" NS

tes

Nt N N . — N?

ig—1 10+1 %0

7]3 — T %
tes

3 p—N; . . 3

n s (N Nz 1) P(S7t):_(p_st)
AN, - N, 0= 4 0

As N; ., > pthe result follows.

Furthermore, when going to some succe$sirs the choice of, for s implies
that for the choice of the sub-distributidrfor ¢ some valué|, < i, is going to be
used. Thus, the sequence of configurations of the f@fnr]-,/, C) is finite and
playercC is winning.

We show that this definition of the sub-distributi@mmplies local monotonic-
ity. Consider two configuration&, [a]~,,,C) and(s, [a]-,,,C). Letd; andd, be
the sub-distributions chosen byin these configurations and Igtand:2 be the
values used to defing andd,, respectively. By definitiond;(¢) is in the open
interval (N, P(s,t), N\, P(s,t)) for j € {1,2}. By definition, ifp; = p,, then
il = 2 and it follows thatd, = ds. Similarly, if p, > ps, thenit > i2. If il > i2,
the strictness of; > d, follows from the strictness of the sequen€g If i} = i3,
thend; > d, asp; > ps.

Cyclic monotonicity of modified winning strategf/e turn now to consider cyclic
monotonicity. Consider the configuratiogs, [a].,,,C’) and (s, [a]w,, C’) that
appear in a play consistent withaccording to this order.
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1. Consider the case where = ¢, Wbs, a = 11 W =Fhy; or a = 9y U Sk,
andC = C’. The strategy defined in the proof of Theorem 2 is also cyltjica
monotone. Indeed, from configurati@g, [.,, C) whereProb,,(s, ) —p = 4
we pass to configuratioft, o)., C) and we know thaProb,,(t,«) — p’ = 0.
Hence, if configurationss, (., , C) and (s, [a].,, C) appear in the same play,
we havep; > ps.

2. Consider the case whete= 1, U 1o andC = C’ and the strategy is as defined
above. Leti; be the bound used for choosing the sub-distributian configu-
ration (s, [a]~,,, C). By construction, values smaller thgnare going to be used
to define the sub-distributions in successor configuratidin®llows that if con-
figuration (s, [a],,, C) is visited, a value3 < ij is going to be used to define
its sub-distribution. From the strictness of the sequeN¢gand N7), and as
NZ% <p; < NZ%H, it follows thatp, < p;.

3. Consider the case whete = 1, U1, a = 1, USF; or o = 90y W =¥, and
Ic = C'. Letp’ = Proby(s',a) andd;, = p; — p/ for i € {1,2}. Letd be the
distribution suggested by play&? in configuration(s, [a.,,!C). By definition
of d, we have) , . d(t) > p;. By assumption(s, [a].,, !C) is reachable from
(s, [y 5 IC), SO both players do not choose to go to configurations of tihma fo
(t,y,1C) for i € {1, 2}. If follows that

Proby(s, ) = Z P(s,t) - Proby(t, )

tes

We know thaty ", . d(t) > p’ + 61. Then, there must exist some S such that

d(t) - P(s,t)"! > Proby(t,a) + 0,

It follows that if playerC chooses this statethe gap between the actual probabil-
ity and the threshold does not decrease. Thus p..

4. Consider the case where = ¢, W1, and!C = C’. Then the proof is sim-
ilar to the previous item. By assumptio@,wins from (s, [a]>,,,!C) and hence
s & |[a)sp, |- Letp’ = Proby(s,«). As playerC wins from (s, [a]s,,, !C),
we conclude thap’ < p;. In particular,s ¢ [ty Ws|sp[n. Letn € N
be such thay’ < p + 1/n < p. By Corollary 1, there aré:,l > 0 with
s & [[un W¢2]2p'+1/nﬂM,j,l and so the probability of; W, in M}, at s is less

23



thanp,. PlayerC is going to use system/;, to guide her decisions. As usual
Probas: (s, ) is equal to the sum . P(s,t) - Probys (¢, ). Let

p// = PrOb]y[]z’l(S, Oé)

As mentione@” < p;. Letd; = p; — p” and letd be the distribution suggested by
player!C in configuration(s, [o]>,, , !C). By definition ofd, we have), . d(t) >
p1 = 01 + p’. Then, there must exist some S such that

d(t) - P(s,t)"" > Probag (t, ) + 6

Thus, if playerC chooses this state the gap between the actual probability in
M, and the threshold doesn’t decrease. In Lemma 4 below, wesgtat the
probability of« increases when revisiting the stateliff ;. Hencep, > p;. O

Lemma 4 Let M be a labeled Markov chaim, andr in AP, « the path formula
qWr, and M, given for some stateof M andk, [ € N. Lett andt’ be different
states inM;;, that both correspond to some stateof 1/ such that

e there is a path from to ¢" in M/}, and

e ¢ holds throughout the unique and finite path from the roat£ff, to ¢".
If we haveProb,: (¢, a) < 1, thenProby: (', a) > Probyy:(t, o) follows.

PROOF OFLEMMA 4. As Proby:(t,qWr) < 1 it follows that there is some
“leaf” ¢ in My, that is reachable fromin M}, such that the unique finite path
from ¢ tot” in M;, does not satisfy Wr. As M}, is an unwinding of\/, it fol-
lows that the subtree reachable frehn 1/}, is contained in the subtree reachable
fromtin M ,. Clearly,Proby: (¢, o) > Prongl(t, «). Indeed, if a path satisfies
qW r then every prefix of the path also satisfigd/ ». We use proof by contra-
diction to argue that there is a path fragrthat does not satisfyW  and does not
pass througlt’. Assume such a path does not exist. Then every path beginning
in ¢ that does not satisfyW r has to pass througth However, botht andt’ cor-
respond to state’ in M. It follows that the only option to falsify W r in game

G (s, @) is by “going in a loop” from state’ to itself. But by assumption all
states on the path betweeandt’ satisfyq, a contradiction. O
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Example 8 The winning strategy for playek in Example 7 is locally mono-
tone asR never meets a pair of configurations that need to be checkelibfo
cal monotonicity. That strategy is also cyclically moneoirom configuration
(50, [¢Ur]sp, V), the only possible cycles lead to configuratidasg [q U r|~,, V).
As explained already, Verifier is restricted #§s,) = 0 andd(s;) < 1/3 or
she loses in the next step. Let> 1/2 ande = 1/3 — d(s1). Thend(sy) >
1/6 4+ (p—1/2) + €. Thusp' > 1/2 + 3(p — 1/2) + 3e in the next configuration
(50, [qUr]sp, V). Ase > 0 andp — 1/2 > 0 we havey’ > p. Finally, if py, ps, . ..
is the sequence of bounds obtained in this manner, then— p;.1 > piv1 — pi
forall 7 > 1.

5. Discussion

Table 1 summarizes which PCTL sub-formulae can always becedeanto
finite plays if the winning player plays according to a wingistrategy. For ex-
ample, a Strong Until with strict bound is ensured to have refistrategy and
explore a finite portion of the game before going to sub-fdaauand similarly
from a negated Weak Until with a non-strict bound. To deteewhethera PCTL
formula is won by means of such finite plays only, we can eitogwert it into
“GreaterThan” normal form and check whether each such sutila has a nega-
tion polarity that corresponds to the desired player in thhte, or we can con-
vert it into negation normal form and interpret that tabke ison the resulting
sub-formulae. As already discussed, one can change thtness of a threshold
bound by slightly changing the required probabilities ie formula. Thus, an
e-correction may change a formula that does not allow finityplto a formula
that does allow finite plays. Note that the opera¥og does not lead to inifinite
plays but may lead to using infinite sets of states.

For example, formulay = [g U r]~0.999 A =[q W 7]>0.9901 IS SUCh that playev
can win be ensuring only finite plays, if she can win at all. tRermore, if the
Markov chain is infinite, the game explores only a finite pmrtof it. In future
work, we will demonstrate that this leads to a completenesslt for abstraction:
abstractions arénite-statelabeled Markov chainsl where the labeling function
L hastypeL: AP x S — {0,1, L} (instead ofL: AP — P(S5)), there is a notion
of satisfaction between PCTL formulae and abstract modelthe abstraction
relation (A4, a) < (M, s) for countable labeled Markov chairdd is a variant of
Larsen-Skou probabilistic simulation [15]; and “completes” means if there is
n for which Verifier can force finite plays in ali/, thens € |n[,, implies there is
some abstractiod with statea with (A4, a) < (M, s) where(A, a) satisfies.
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Table 1: Sub-formulae that result in finite plays)(or don’t (), for which winning player; ticks
in parentheses indicate finite plays after an iniabrrection of bounds

X> Xz W> Wz U> Uz

Verifier | O | O(0) g O O | O(O)

Refuter | [ O (0@ O O O

It is known that these 3-valued labeled Markov chains antaidistic sim-
ulation cannot render such completeness for all of PCTL.[Ziture work will
therefore also attempt to generalize these abstractioakiod of tree automata
such that we secure completeness for the entire logic PCTL.

6. Related work

In [6], finite-state (discrete-time) labeled Markov chaamsl probabilistic CTL
(PCTL) are considered in their standard semantics, anerdiit forms of evi-
dence are being developed for documenting the falsity of &aALPGrmula in a
given state. One form computes those paths that contribost tm the falsity of a
formula. Another form computes most probable sub-treesio gpore precise di-
agnostic evidence. Both forms, studied for Strong and Wesatl,\&re supported
with shortest-path type algorithms for computing such emice.

In [2], the line of work from [6] is being pushed into the wortd Markov
decision processes, with a focus on upwards-bounded piapdbresholds in
PCTL formulae — whereas we study the downwards-boundedaéseut loss of
generality. The shortest-path algorithms in [2] are themimed with AND/OR
trees in order to filter the computed set of paths to one wigh bxplanatory value,
and to compute the probability of that filtered path set.

In [22], bounded model-checking techniques are applietiéayeneration of
counter-examples for probabilistic reachability propest These techniques are
combined with optimizations such as loop-detection to dpgethat computation
and to contain the size of these counter-example path sets.

In [8], the soundness of probabilistic counter-examplesetdeon simulation
preorders of [10, 19], represented as finite-state Markamns) appeals to prop-
erties of the possibly infinitely many concretizations déttfinite-state Markov
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chain. An alternative approach is that proposed in [11],i&Hi@ite, stochastic, 2-
person game& are used as abstractions of Markov decision procek&eshese
games have a satisfaction relation for PCTL that is sound regpect to abstrac-
tion. Therefore, the winning strategies that witness swatlsfactionG |~ ¢ are
guaranteed to transfer into winning strategies that wartles satisfactiod/ = ¢

for the modelM thatG abstracts. This is an incomplete abstraction method in the
sense discussed in Section 5 of [11].

In [5], a quantitativeu-calculus with an explicit discount operator, and with
models whose transitions are labeled with discount fadiassnon-negative real
numbers as results of model checks. Quantitative parityegeame developed and
shown to correspond to model checks for formulae of the qgtaine ;.-calculus.
However, winning strategies are no longer memoryless iregdras they may
have to “make up” for discount factors encountered en-raugeplay — even in
games with finite set of configurations.

In [17], a quantitative.-calculus (QM:) is defined over models that contain
both non-deterministic and probabilistic choice but nacdimting. A denota-
tional semantics generalizing Kozen'’s familiar one [13¢igen. For any finite-
state model and formula of givia probabilistic analogue of parity games is given,
the determinacy of this game is shown. It is also proved tek@dame value equals
that of the denotational semantics for the model and fornmutestion and that
there exist memoryless winning strategies.

This paper is a journal version of the paper [4].

7. Conclusions

We captured the denotational PCTL semantics over countalbéled Markov
chains through Hintikka games with Biichi acceptance dadi. This therefore
renders an operational account of truth and falsity of PCTddet checks on such
models in terms of winning strategies for the players Variiad Refuter (re-
spectively). Game moves depend on the strictness or nmress of probability
thresholds for path formulae. Winning strategies may bearassl to be memory-
less and monotone in their choice of structural elementse(seb-distributions).
PCTL formulae in “GreaterThan” normal form that contain Woperators with
a certain combination of threshold type and negation pylarstatically derived
from Table 1 — have winning strategies that may be intergragaa finitary witness
of the falsity (respectively, truth) of the formula undemnsaderation.
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