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Adaptive Joint Detection and Estimation in

MIMO systems: A Hybrid Systems Approach

Abstract

An adaptive receiver based on hybrid system theory is developed for a multiuser multiple-input
multiple-output (MIMO) fading CDMA system. The basic idea is to treat the transmitted symbols
and channel gains as unknown states (discrete and continuous) within a hybrid systems framework.
The Bayesian inference based state estimation is derived using multiple model theory resulting in an
optimal joint sequence estimator which is shown to be intractable in its computational complexity.
A sub-optimal receiver (IMM-SIC) is then derived based on the well-known Interacting Multiple
Model (IMM) algorithm and successive interference cancellation (SIC) scheme. The paper shows
the specific approximations made to the probability densities of the optimal receiver in deriving
IMMS-SIC receiver with complexity linear in number of users. This receiver design is well suited for
online recursive processing of space-time coded (STC) CDMA system where the decoding stage is

incorporated within the multiple model framework.

Index Terms

Joint estimation and detection, multiple models, multiuser detection (MUD).

EDICS Category: 3-COMM

I. INTRODUCTION

A time-selective MIMO wireless system exhibits temporal diversity and spatial diversity. This
leads to improved bandwidth utilization at the expense of increased computational complexity in
such a system. STC can be employed to further exploit temporal and spatial diversity. ST block
coding (STBC) was first introduced by [1] for an unmodulated two transmitter antennae case
with known channel information and flat fading. This was later generalized for N transmitters
[2]. STBC significantly improves detection and increases system capacity. Recent literature [3],
[4], [5], [6] featuring the use of diversity techniques rely on the underlying structure induced by
spreading waveforms of DS-CDMA systems and/or the signal structure induced by antenna array
for interference suppression.

A considerable amount of research has been devoted to signal detection in flat Rayleigh fading
channels. Suboptimal algorithms proposed involve two-stage receiver structures or joint channel

estimation and symbol detection. The former advocates channel estimation implemented by a
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linear predictor and signal detection facilitated by per-survivor processing [7], decision feedback
[8], pilot symbols [9], [10] or combination of all the above [11]. Other suboptimal solutions include
hidden Markov models (HMM), Kalman filtering [12], H* filtering [13], [14] and methods based on
the expectation-maximization (EM) algorithm [15]. Furthermore, joint estimation and detection
techniques are developed based on iterative processing [16] or sequential Monte Carlo filtering
based methods such as Gibbs sampling [17] or mixture Kalman filtering (MKF) [18].

Motivation for our approach is multiple model filtering, popular in target tracking, due to
superior performance when the system states and noise levels are random; since the wireless
environment has high levels of uncertainty and interference we have investigated the extension of
a multiple model based method for joint estimation and detection problem in wireless communica-
tion. Multiple model approach uses a set of models that differ in their association hypothesis and
in their driving and measurement noise levels. A filter is set up for each model and the probability
that each one of these model associated hypothesis gave rise to a certain measurement is obtained.
The set of associated hypothesis adapts with time based on the latest set of measurements. A
popular algorithm is the Interacting Multiple Model (IMM) method proposed by [19], [20] which
was used for symbol detection and channel equalization in static single-user ISI channels [21]. In
this paper we have introduced the MIMO multiuser communication signal model within a hybrid
system framework and used models based on associated hypothesis to solve the joint estimation
and detection problem in Rayleigh flat fading channels and derived the IMM-SIC algorithm (based
on the IMM principle) to estimate the model states.

The proposed method is in contrast with other Bayesian receivers. Monte Carlo filtering (Gibbs
sampling) based methods, for example [22],[23], where the receiver exhibits massive parallelism
due to Gibbs multiuser detector. Other publications with similar approach and massive parallelism
include [24], a recursive MKF algorithm which also approximates the channel distribution with
a mixture of Gaussians. MKF is similar to Rao-Blackwellised Particle Filtering (RBPF) [25] and
[26] and has been implemented for the communication signal model in [24], [27], but is limited
to a single-user flat-fading channel, and in [28] for a MIMO single-user channel with an iterative
detector. Joint maximum a posteriori (MAP) estimation and detection has also been approached
in [29], [30] which are trellis based algorithms with complexity exponential in time unless pruning
[29] (Reduced-state Sequence Estimation (RSSE)) or decision feedback [30] is employed. Similarly
[31], [32] propose a forward-backward recursion for a trellis based joint MAP detector where [32]
expands on the work of [31] to include any arbitrary modulation scheme with a fixed trellis size

and is conceptually similar to the Per-survivor Processing (PSP), and the number of trellis states
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is in the order of channel memory and symbol block size. This is in contrast with our online joint
detection algorithm where complexity of the state-space does not grow with channel memory or
sequence length. Considering an uplink, mobile station (MS) to base station (BS), consideration
needs to be given to multiple users’ multi-paths which vary independently with time. There are
a number of publications that consider uplink CDMA. [33] considers slow fading channels and
presents an iterative procedure using an approximate sequential EM (AEM) receiver for quasi-
static channel estimation and detection which has a complexity exponential in number of users
per bit and requires decision feedback initialization for each EM iteration. In [34] another iterative
technique combining the Gibbs sampler with a group-blind decorrelator is proposed for an uplink
CDMA system.

The paper is organised as follows. In Section II, the system model of a MIMO system is presented.
Section IIT introduces the hybrid system framework for a MIMO system and Section IV the multiple
model based estimation of this framework. Section V develops the suboptimal receiver for a general
MIMO system and finally extends it to the special case of STC MIMO and introduces a ST decoding
strategy based on the Markov property of the discrete hybrid states (symbols). Section VI presents

simulation results and Section VII concludes our presentation.

II. SYSTEM DESCRIPTION

Biolil [ bl 2] spreader X, (1) )
g S(t) |
° _ 14, ‘
S - . .
g -
. m . N
Bl | I by [2i] spr}iader x, (1) N,
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Fig. 1. Transmitter design for user k.

Consider an uplink MIMO system with K active users and N7 transmitter (Tx) antennae on
each user terminal and N dimensional receiver (Rx) antenna array at the base station. The block
diagram of the transmitter end of such a system is shown in Fig. 1. In discussions to follow, the
number of independent signal streams per user (N + 1) is equal to the number of transmitters per
user (N7), i.e. Ny = Ng+1. A number of typical assumptions are made and the system description
is developed.

Assumption 2.1: Transmission symbol sequence {0y 5, [i]} is generated by a Markov source. The

spread-spectrum signal can be considered as a sequence from a finite state Markov chain.
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Remark: General source coding of messages, synchronous multiuser transmission and sampling
will lead to a correlated sequence of symbols such as those from a Markov source. The independent
identically distributed (i.i.d.) sequence is a special case and will be considered in Section VI.
Assuredly this receiver can be extended to an asynchronous CDMA channel.

For the nsth i.i.d. BPSK transmission stream the transition probability matrix [¥,, |sx s is known
with all of its elements being 0.5, for example the conditional probability P (5 ., [1] = +1|8kn.[i —
1] = —1) = [¥,,]o1 = 0.5 where []o; is the (2,1)th matrix element. With ny = 0,1 (Np = 2)
the combined transition matrix is the Kronecker product of the individual transmission stream
probability matrices; Iy = [¥; ® ¥yloxo where @ = S? and ® denotes Kronecker product
operation. This can be generalised to ng = 0,..., N and the transition matrix will be Il =
Uy ...0 Uy ® U ® Ugloxg where Q = SNT,

Assumption 2.2: The DS/CDMA MIMO system is Alamouti Space-time (ST) coded at symbol
level ([1], [2]) unlike ST coding performed at block level ([35], [36]) for two transmitters.

Remark: This can be generalised to N7 > 2 by resorting to generalised complex orthogonal
design (GCOD) [2] with Ny = N; + 1, which is analogous to Alamouti STC but for more than
two transmitters. For clarity we limit our discussion to Ny = 2 transmit antennae. Alamouti ST
coding generates the following 2 x 2 transmission matrix where symbol at time-instant 2: 4+ 1 from

one antenna is the time reversed conjugate of symbol at time-instant 2 from other antenna,

br.,1[2i] b 2[ 2] _ Brolil  Brali] 1)
beal2i + 1] by2[2i + 1] —Bialil By oli]
where ng = 0,1 and by, [¢] denote the transmitted signal from Tx n; where n; = 1,2 for user £ at
time 1", with T' being the symbol duration.

IT; is defined as the transition probability matrix for Alamouti STC transmission for a BPSK
modulation, and is given in Table I. Elements of the matrix II; are either 0 or 1. For example,
the first row in Table I contains the elements 0,1,0,0 indicating the certainty in the symbol
transmission following encoding, i.e. if the symbol pair transmitted at time 2¢ is [—1,+1], then
the symbol pair transmitted at time 2¢ + 1 is with certainty [—1, —1]. II; can be generalized to
any orthogonal transmission design [2] for Ny > 2 MIMO systems. The consequence of Alamouti
STC is that the combined transition probability matrix of the transmission stream will alternate
between the matrix at 2+ 1 being II; (Assumption 2.2) and at time 2¢ being IIy (Assumption 2.1)
for i =1,2,..., M where M is the sequence length. For BPSK modulation the size of the signal

constellation is S = 2, the extension to the general case is straightforward.
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In DS/CDMA each nsth symbol sequence is assigned an orthogonal spreading sequence.
N

spe(t) =D spopr(t — (n = 1T.) (2)

n=1

The normalized modulation waveforms sy (t) are zero for ¢ ¢ [0, T]. s sp% ... sp°y is a N length
signature sequence of +1s and —1s assigned to kth user, and pr. is a unit-amplitude pulse of

duration T, (where NT, = T'). Each of the K N transmission signals, are written as,
= APbg,li]s (t —4T) forng=1,....,Np,k=1,...,K. (3)

For clarity of exposition, the rest of Section I and Section II - IVB are developed for the general
MIMO case that encompasses Alamouti ST encoding as a special case due to Assumption 2.1.
The specific effect of ST encoding is considered in Section VC when application of IMM-SIC for
Alamouti STC is considered.

1) Channel Model: Signal z}*(t) is passed through a channel which can cause amplitude and
phase shifts. In this work the channel is modeled in Cartesian co-ordinate form (¢ = c¢® + jc!)

tanv‘)

in the complex plane. The sequence {c,(;ll } is the channel gain between n;th Tx and n,th Rx

of k-th user’s [th multipath which includes effects of the transmitter and receiver as well as the

amplitude and phase of the channel response.

Assumption 2.3: The phase and amplitude of the composite channel gain C](C [’n'”) is Rayleigh

distributed and constant over the symbol duration 7', i.e. cg’ll”nr)(t) = cgcnl”m)[ | foriT <t < (i+1)T.
2) Observation Model: Tf v™(t) is the complex additive white Gaussian noise, the baseband

equivalent signal at receiver n, [6] is,

(1,n, (2,
ZZ C, ln [t ZEk t — Tk1— Ty l) + Ck ln [t]xk(t — Tk2 — Ty l)] + Q)nr(t) (4)
k=11=1
I1, (b, [2i], b [2i] }
(b (20 1, b2 + 13 -1 -1 L1+ -1+

[-1,-1] 0 1 0 0

[-1+1] o 0 0o 1

[+1,-1] 10 0 o0

[+1.+1] o 0 1 o0

TABLE I

TRANSITION PROBABILITIES FOR ALAMOUTI STC MIMO SYSTEM
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Assumption 2.4: The system is synchronous so that channel dispersioni.e. 73 ,,, = 0. Furthermore,
there are L multipaths between each user’s Tx n; and the Rx n, with delay for [-th path represented
as Tk,l and Tk,l = l_Wl, W = %

Denote z}} () = z;*(t — Tj,), and the resulting continuous time signal 7" (t) is given by,

ZZ "tk (t) + e [Had (8)] + o™ (1) (5)

k=11=1

Remark: The synchronous case of model (5) can be considered equivalent to the synchronous
multiuser system with (K NpL) users where it is sufficient to consider the received signal at ith
symbol interval. In the receiver model the unique signature sequence assigned to each Tx of each
user is shifted by (I — 1) chip durations to represent each multipath and T > % therefore ISI due
to channel dispersion can be neglected [37].
Sampling the received signal (5) at chip rate T%, and where the channel is constant over a symbol
duration NT,, results in the discrete-time representation below,
" [iN +n] \/— Z Z[ e Akbk iR 1+1+e el flzbkﬂ[i]s}c,nfuﬂ +0™[n]  (6)

k=11=1 ~~ ~~
T[] z3,[n']

Assumption 2.5: {v""[n ]}n * , is a Gaussian random complex variable with zero-mean and vari-
2
ance p;,

v

"[n] ~ N(0, p7) (7)

The chip rate sampled signal sequence {r""[iN + 1],...,7™[(i + 1)N]} after serial to parallel

conversion is,

K L
1 ln (2,n,) .
= — c ”zAb s, +c 2] A2by o[i]s) +vr 8
melZ [ Akbi1 [y +eg™ 1] ARbr sy +v" (] (8)
] x, 1]
where, x/[i] = Ay bpn,[i]s;;
s s s s T
g [SZ,N—HQ""SZ,N’SZJ"'SZ,N—1+1] for I > 1, (©)
kT
[szsl,...szsN]T for 1 =1,

The following matrix manipulations lead to the MIMO signal model at the receiver. First we stack

the Ni sampled signals which results in,

K Nr
= 2= 3 [epblexit o+ cyilexll | +vi] (10)
k=1n:=
where r[i] is of dimension NgN x1 and ¢ [i] = [¢ | (ne,1 [z] "“NR) [i)717 and x};[i] = [z} [iN]"
zt[(i+1)N—1]T]". Noise vector v[i] is zero mean 1.1.d. random vector independent of {c}", kK:J;[fuzlﬁ

{x3 ,i( ]ﬁl _- The spatial separation between Rxs are typically proportional to the wavelength of
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the signal, resulting in no correlation between the received signals [38], [37], [39]. The R.H.S. of

(10) is re-arranged for each user’s multipath signals to have a per-Rx ordering,

| K N [xpile] ... xppfd]] ... 0 cgcn,,n[z.]

rfi NZ Z : : : v (1)
k=1n;=1 Ty [ Ny T (ne,Np)-
0 x| e

where cgcm’nr) [i] = [cgc"{’nr) [ ... c,(cn“n'”) [i{]7]# and Iy, is an identity matrix of size Ng. Substitut-

ing (9) in (11),

=3 Z % Ly @ (87511 . S5 D) (AR B 1T ) i) + Vi (12)
k=1n,=1

/

-~

Sye
where ¢ [i] = [c\™ V[I]7 ... ™ VW []H]H and S7¢ is of dimension NgxN x LNg.

K Nr

efi] =Y Y Sp (A b [T N ) ey [i] + vli] (13)

k=1n:;=1
which forms a received signal vector with a per-Rx ordering for multipath signals of K N7 trans-

mission streams. (13) in matrix form is,

K

= SpABylilex[i] + v[i] (14)
k=1

where By[i] = diag(bp 111 np, - - - » b N Iing) s Ak = diag(A T ng, .- Ap " Iing), Se = [SY ... 87 ']
and ¢x[i] = [c}[i]7 ... céVT [i]#]H. Notation diag(Xy, X3) is a block diagonal matrix with matrices
X; and Xy on the diagonal. The composite received signal from all the receivers (14) is matched
filtered to yield a KLNgrNr vector y[i], whose (k — 1)LNgNr + (ny — 1)LNg + (n, — 1)L + l]th

component is the output of a filter matched to s;;;. Thus kth user’s matched filtered output is,
o T o
yill = [ 8¢ ... s ] xli (15)
where yi[i] = [yL[i]", ...,y " [i]]". Substituting (14) in (15) gives,

K
= Z Ry 1 Ap By [ilew [i] + Vi [i] = Ry ABJilc[i] + v]i]
k=1

where Ry, (R = [Rg,1 ... Ry k]) is the correlation matrix of dimension LNp Ny x KLNgNyp for

the kth user. The square submatrix denoted as Ry is the correlation matrix between users k

and k. [Ry k'] (n,—1)LNa+(n.—1)Np-+l,(n) = 1) LN +(n/,— 1) Natr = 0 for nj. 7 n,. due to spatial separation
at the receivers. ny,n,,l/n},n., 1" are the Tx,Rx, multipath indices for users k and k' respectively.

Stacking the matched filtered outputs in the order of the users leads to,
y[i] = RABIJi|c[i] + V[i] (16)
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where R is a square matrix of dimension K LNrNp x KLNgrNr. Upper triangular Cholesky
factorization [40] of the correlation matrix in (16) leads to R = UU', where U is a upper
triangular matrix and L = U'. Sending the matched filtered signal through a filter U~! yields a

signal, z[i] = U~ ly[i] with white Gaussian observation noise v[i],

2l = LABIic[i] + v[i] (17)

H H
(nt’nr) — [z(nhnr) (nt’nr) ]H

: (ne,mr) H1H
with z, 1 2y ]

H Q.
T ) oo B and z = [zf,... 2" 2[i] is a

sufficient statistic for determining channel states and symbols transmitted.

III. HYBRID SYSTEM APPROACH TO THE MIMO MODEL

The observation model (17) relates the measurements (matched filtered noise whitened output)
to unknown gains and symbols. The problem addressed in this paper is the joint estimation
and detection of the unknown channel gain and transmit sequence in the presence of multiuser,

multipath interference.

A. State Space System Model

Taking into account that the actual channel model is not known, the time-varying channel is

tracked by a simple state-space model,
c[i + 1] = Fe[i] + w[i] (18)

for some known F,(typically with F = fIxrn,n, for some scalar 0 < f < 1 [12]). Note that f =1
will result in a Random-Walk model. w(i) is driving disturbance which is statistically indepen-
dent and Gaussian distributed i.e., N'(0, p2 I n,N, ). The corresponding state-space measurement

equation will be,
z[i] = LABIJi|c[i] + v][i] (19)

Unfortunately, in many practical communication systems, we do not know the impulse response
nor the channel order not to mention the channel gains varying over time. Therefore the objective
is to find the transmitted symbol sequence from measurement sequence when channel coefficients
and channel order are not known. To achieve this the MIMO system state-space model, (18),(19), is
posed as a hybrid system and through state estimation we track the system’s behavior along both
its continuous state (channel gain) changes and its discrete state (symbol) changes. It is common

to refer to the discrete state of the hybrid system as system’s mode.
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B. The proposed hybrid system framework

Consider the kth user in a BPSK MIMO system with Ny = 2 transmitters. [by 1,b; 2] is the
symbol vector transmitted by user k at time-instant 4, and can take one of four possible values as

shown below.
b, = [bk’l,bk’g] S {[—1, —1], [—1,—|—1], [—l—l, —1], [—l—l,—l—l]} = {51,52,1_)3,1_)4} (20)

where Bq represents a possible transmitted symbol vector by user k£ and is a possible mode of
the system, denoted m,. In effect these possibilities can be represented by four mutually exclusive

hypotheses, hi, ho, h3, hy each pertaining to a mode,

hq : by = by; referred to as system in mode m[i] = my, (21)

User k being in a specific mode (say my) is associated with a specific transmitted symbol set Bq,
this symbol-mode’ association is denoted as {by, m,} for the transmitted symbol pair [by 1, by 2]-
This allows symbol detection to be carried out by testing the hypothesis of the system for a specific
user k. In general the system mode m, at any given time for user k& will take one of Q possible
values, i.e. ¢ =1,...,Q where Q = SV7. In this case, Q = 4.

The mode representation for the K-user MIMO wireless system as a whole is as follows: For
each user there are Q possible modes and the system of K users will have QX modes (hypotheses).
That is the number of modes are exponential in the number of users. A particular mode of the K

user system at time-instant ¢ will be M, where,
_ _ K
M, =[mj,  ...mj. ], r=1...Q (22)

r indexes the overall K-user system mode where ji , is the mode index for user k£ when system
is in mode r. Therefore ji, € {1,2,...,Q} for k = 1,..., K. mj, will take one of Q possible
values, {m1,ma,...,mg} (as in (21)). Observing the system equations, (18),(19), it is clear that
state evolution (18) does not depend on any unknown symbols and hence is the same for all
system modes. The measurement (19) differs for each system mode and hence the r-th hypothesis

is represented as,
H, : z[i] = LAB,c[i] + ¥[i], (23)
if system mode at time-instant i, M[i] = M,; (denoted in short as M).

which is formed by replacing the transmitted symbol matrix B[i] of unknown symbols at time-
instant 4, with the matrix B, from the 'symbol-mode’ association {B,, M, }, where B[i] € {...B,....}
and r € {1,2,..., 9K}, Therefore (18), (23) gives the hybrid system representation pertaining to
each possible system mode M (hypothesis H,) that a system could be in at a given time.
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IV. MULTIPLE MODEL ESTIMATION FOR MIMO SYSTEM

Following the developments in the previous section, the MIMO system is characterized by the
state equations, (18), (23), where the combination of continuous states (channel gains) and discrete
states (symbols) or modes form a hybrid system.

Consider a MIMO system whose received signal sequence up to time instant i is Z° = [z[1], . .. , z[i]].
The optimal receiver searches through all possible paths from the time-instant 1 to 7 given the
observations Z* of the hybrid system (23). At any time-instant possible combinations of symbols
transmitted by K users (or the number of possible modes for the system to be in at that time-
instant) is Q¥ (22). Considering a time interval of length i the number of possible sequences (or
mode sequences in the hybrid system framework) will be Q%% and a specific mode sequence through

time-instant i is denoted as M’ for s € {1,..., QK"}, and

M =M, ... M, ] s=1,...,0% (24)

1,s

Thus the number of mode sequences to be evaluated grows exponentially in number of users K and
sequence length ¢, making the optimal approach impractical. The s-th sequence of modes through
time 7 is written as, M’ = [M’!, M[i]] where mode sequence through time-instant i — 1, denoted
as Mifl, is its parent sequence and M[i] = M, its last element.

In the hybrid system (23), if the transmitted symbol sequence is given, the continuous valued
state (channel gains) is estimated for the sequence length i, using Bayes’ Law and Chapman-

Kolmogorov equation,

pleli i 2] = FESR el 27 (25)

where, p(c[i] | M{, Z'7") = /p(C[i] | e[i — 1], M)p(eli — 1] | M§, Z'")deli — 1] (26)

and p(c[i] | ¢[i — 1], M%) = p(c]i] | ¢[i — 1]) since channel variation is independent of transmitted
symbols (18). Therefore, p(c[i] | c[i — 1]) ~ N(c[t];Feli — 1],021xn,N,) and p(z[i]|c[i], ML) ~
N (z[t]; LAB,cli] , p2I1krn,yN, + LAvar(c[i])ATLT) is the mode sequence likelihood given by
the Kalman filter innovations likelihood [41]. Since Mi~! is the parent sequence of M%, p(c[i —
1| ML Z5Y = p(efi — 1] | ML Z1). For the hybrid system (18),(23), in the event of given
transmitted symbols, the above two recursions imply that the channel gain can be estimated by a
Kalman filter. When the symbol sequence is unknown, a bank of Kalman filters each matched to all
possible symbol sequences result from the above consideration. Demodulation of the transmitted
sequence requires the determination of the most likely symbol sequence amongst all possible

sequences. The decoded symbol sequence B € {Bs,s € {1,2,...,0K1}) and QX" is the number
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of system modes (hypotheses). The question then is to determine the probabilities of each mode
sequence M:. The maximum a priori (MAP) estimate of the symbol sequence B = [B[1],. .., BJ[i]]
is given by,

BSMAP

&>
Il

sMAP = argmax P[M|Z?] (27)
S

Therefore the 'symbol-mode’ pair association {Bsmar, My.pr} gives the MAP estimate of the
symbol matrix sequence B. The term P(M!|Z") is the conditional probability of the sth mode
sequence. The probability of the mode sequence is obtained by Bayes’ rule [20],

P(M;|Z") = ép(Z[i]lMi,Zi’l)P(MilMif_) (M HzZ™ ) (28)

where P(M’;HZFI) is the conditional probability of the s'th mode sequence for a sequence of
length 7 — 1, a is the normalization constant. Note that the first probability term on the right side
is the marginalized density denominator in (25), the innovation likelihood.

Then, in view of the Markov property (from Assumptions 2.1, 2.2),
P(M. | MY = P(M[i) = M, | M[i — 1] = M) = P(M!|M"") = 7,0 (29)

where M,ff 1is the last mode in the parent sequence s’ through time-instant i — 1 and e 18 the
mode transition probability. The mode indices jj s, ji—1,# have taken the values 7,7’ respectively
and r,r' € {1,..., oK }. The transition probability matrix for the system mode is determined from
the matrix [IIp]goxo and number of users K, which gives [IIp ® ... ® [Iy]gx xox where 7 = []pr

is a matrix element. The mode transition probability leads to a reduced form of (28),
o 1 o o
P(MG|Z") = —p(alil| My, 27 ) P(My [ My, ) P(MHZ'T) (30)

The distribution of the state c[i] is a weighted mixture of the model-conditioned densities with
conditional model probabilities given in (30) as weights,
QK Qr
Z') = p(clil| M}, Z") P(M}|Z") ZN Ji &[ili], Bslali)) P(M;|Z7) (31)
s=1
The means &;[i]i], variances X[i|i] of the state and innovation likelihood can be calculated recur-
sively by a bank of Q¥ Kalman filters. (25),(27),(30),(31) essentially show a hierarchical structure
of state estimation at the inner loop and mode estimation at the outer loop of the computation at
time-instant ¢. The probability of a model representing a particular mode history can be calculated
recursively from (30) with respect to a mutually exclusive and exhaustive set of Q%? models.
Given that the transmitted symbol sequence defines the mode sequence which in turn influences

the channel gain estimates, it is clear that optimal estimation algorithms will incur exponentially
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increasing computational complexity due to the exponentially increasing number of possible symbol
sequences. Thus the number of models, (and thus the filters used) grows exponentially with the
number of users K and sequence length ¢ making the optimal solution impractical.

A popular sub-optimal approach is the IMM algorithm [42], [20], which reduces the mode
complexity to QX filters by suitable merging of previous estimates and provides a joint estimate
of the channel gain and symbol detection. This again is computationally expensive when the
number of users and transmit antennae increase in a MIMO system; therefore we develop a
successive cancellation based approximation leading to interacting multiple model based successive

interference cancellation (IMM-SIC) detector.

V. IMM-SIC FOrR MIMO SYSTEM
A. IMM Approximation

Implementation of the IMM introduces a hypotheses reduction due to interaction between the
state estimates for all the models at the beginning of each filter cycle at time-instant i [42]. Each
filter at the start of cycle 7 is initialized using a weighted mix of model conditioned state estimates
from previous filter cycle i — 1 - mixed initial conditioning. Therefore the number of filters remains
the same for every filter cycle. This yields Q¥ filters running in parallel and each filter is matched
to a mode.

Approximation 5.1: The mode conditioned prior distribution of the state is approximated such
that the past through time instant ¢ is summarized by a mode conditioned estimate and covariance.
The weights (mixing probabilities) are prior (predicted) mode probabilities given all the posterior
mode probabilities {M;,_ 1}2; from the previous cycle. The mode-conditioned posterior probability

density function (PDF),

p(ai]| M7, eli])
p(a[i]| M}, Z*~1)

p(e[d]|M;, Z7) = ple[d)|M;, Z"Y) (32)

is essentially the same as (25) but conditioned with modes at time-instant 7, rather than the

sequence of modes M. The prior is,

QK
p(ellI M Z7Y) = Y pleldIMy, My, 20 P(M M, 20 (33)

r'=1
~ Z p(C[Z'”M;, M:’_laéT’ [Z - 1|IL. - 1]7 2y [Z - 1|IL. - 1])Nr\r’ [Z] (34)
=1

Similar to (26) the prior distribution p(c[i]| M}, M5 ™', Z*1) (33) will follow from the Chapman-
Kolmogorov equation. The approximation is reflected in the second line of (34) where in the first

term on the R.H.S. the filters’ means and covariances are used as sufficient statistics of all past
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observations. The prior mode probabilities are p,,.[i] = P(M,; U ME, Z ). Therefore instead of
considering a mode sequence, we just consider only the mode and associated state estimates at
the previous time-instant. The expression (34) is of the same form as (31) in the sense that it is
still a mixture normal distribution but the mean and covariance of each normal distribution are
computed differently and at each time-instant using prior estimates from the previous time-instant.
The decoded symbol matrix B € {B,,r € {1,2,..., Q%}} and QF is the number of system modes
(hypotheses). The MAP estimate of symbol matrix B[i] = diag(B1[i],...,Bx[i]) is given by

Bli] = B,uar
rMAP = arg max P[ M}|Z ] (35)
T

Therefore the ’symbol-mode’ pair association {BTMAP,MTZ:MAP} gives the MAP estimate of the
transmitted symbol matrix B[i]. The term p,[i] = P(M?|Z") is the conditional posterior proba-

bility of the rth mode which is obtained by [20],
QK
o 1 I o o
P(M;|Z") = —p(2[i]|M;, ") > P(M7IM; ) P(My 2 (36)
r'=1

where p,.[i — 1] = P(M! '|Z*=') is the conditional posterior probability of the r'th mode at
1 — 1, a is the normalization constant. Note that the first probability term on the right side is
the marginalized density denominator in (32), the innovation likelihood. At time 4, predictive
state estimates are computed under each possible current mode conditioned on all previous Q¥
modes (34). The posterior channel gains are then calculated (32) by QX set of filters, each filter
conditioned on each possible current mode. The aggregated channel estimate at a given time is

calculated from a mixture Gaussian of QK terms,

p(eld)|Z") Zp c[i]|M;, Z") P(M;|Z7) (37)

The state estimates adapt with time and MTMAP represents the mode (associated with the trans-
mitted symbol set of K users) the system is in at current time and the IMM cycle is repeated
recursively. The complexity of the IMM based online joint symbol detector and channel estimator
for a K user MIMO system presented above is still exponential in number of users. Further
approximation based on successive cancellation within the probabilistic framework is however

possible.

B. SIC Approzimation

Consider the signal model (17) developed in Section II. For the kth user,
k

2] = > LipwApBplilew[i] + Vi[i]
k'=1
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Since L in (17) is a lower triangular matrix, the matched noise-whitened output for user k is a

combination of multi-user interference (MUI) term of all users up to £ — 1 and the users signal

k—1
2li] = > L g ApBp[ilew [i] +Li p AgBylilex[i] + Vi[i] (38)
k'=1

~/

MUI

This can be expressed in a matrix form,
zi[t] = L 1.p—1 A1 1Brk—1]dcrp—1[t] + Ly p ApBy[i]eg[1]) + Vi [d] (39)

where Ly 1.x—1 = [Lg,1,. .., Lgg—1], Brg—1[i] = diag(B1[i], ..., Bg_1[i]), Arx—1 = diag(A4,...,

Apor) crpli] = [eifi], ... epon [i]]71H

Approximation 5.2 IMM-SIC Algorithm: The IMM approximation (5.1), where the past
through time instant 7 is summarised at a single time instant, considers all users collectively.
The basis for the SIC approximation is for the detector to consist of a filter /detector for each user
which utilizes information from only the previous (k — 1) users and the current user’s information.
The unknown discrete mode at time-instant ¢ for user k, i.e. m[i] = my, is denoted in short as
mz where £ = 1,..., K; each mode is decoded successively Vk. Unlike in the previous section,
here a mode m . represents the discrete state of each user and not the discrete state of the overall
(K) users’ system M}, at a time-instant i. A mode sequence {mql, ..,mqk} is denoted as mql:k
where the indices g, € {1,...,Q}. The posterior conditional density for current user k is given

from Bayes Law,

(Ck[’LHm ! ) = p(zgli]|eli, ml]k’ Zl g 21k 1[1])
e p(arlillmi, , 2y 2]

plelillme, . Z1y' zin—1[i)) (40)

which is essentially the same as (32) but for user k only conditioned on kth user’s modes at time-

instant ¢. Note that the distributions on the R.H.S. all conditioned on Zi:_kl = [z1.x[1],- .., Z1:k [0 —1]]

4

and zy.5—1[i] = [z1]7], ..., Zk—1[¢]]. The prior term in (40) is given as,

Meo

plexlillmy,, 275) = plelillmg, my " Zi ) P(my my,  Z75)) (41)

qr’

<

=
Il
—

2
Mm

(ck[z]|mqk,m ! cq k[z - 1|7’ - 1] 2q ,k[i - 1|7; - 1])Mq\q’ [Z] (42)

,,\
Il
_

q

Similar to (34) the term p(cg[i]|m? mZ 1, Z7)) (41) will follow from Chapman-Kolmogorov equa-

qr?
tion and the past observations are approx1mated by the second order statistics of each filter of user

k from the previous time-instant (42). Having dealt with the prior in (40) consider the likelihood
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Time
delay
Zrl
- A oA SSAY -
2, [i], By i1, Cowey oy [HL 2 oy [ifT]
&\, Tl ..\ [li]
B 11 11
€ i1 ¢y, >y Filter = S
Y — Ty matched to 2, (il
Z [i-1)i-1) ARl m, A
€, . il ¢, [ili]
i 2. U 5 [l
G, Li1li- ¢y ,liy [ Filter : —
= = = matched to I, [ili]
Lol S 250 m .
S 2 A, L[]
5 ¢, il C.\[ili]
i R 5l
Coulitin £ | €4 0 [ Filter e
= -
Z — o= - matched to =, i)
X Li-1i-1] 5[] m, TN
" i C ili
&l ¢y, —p  Filter cotl
P—— p— matched to 2, il
Z, i li-1fi-1 ol m, mi]
Model probability
update at (i)
i I A
o, 1T 2.k Cgw y [ili]
L " MAP‘channel o
o i Mo estimate T [ili]
LI [P
A A A
q,""=max(u, [i]) {b e, m v}
q _
B, [i]=b,w®I,

Fig. 2. IMM-SIC cycle for user k symbol detection and channel estimation.

term on R.H.S. which is expressed as,

P(Zk[l] |Ck [IL]’ mflka Z217€17 Z1:k—1 [Z]) - / Zp(Zk[Z] |C1:k [2]7 mfh:ka ZZl?gla Z1:k—1 [2])
plevk—ilillmy, , ,Z3, ) P(mi, |23, )derr_1[i] (43)
The discrete summation is over all possible Q*~1 mode sequences and the integration marginalizes

over the previous k£ — 1 users channel estimators. The first step in simplifying the likelihood is that

the joint distribution of mode probabilities are approximately decomposed as,

P(m’ |Zzi:k71) = P(mél:k—2|zilk71)P(mZ]k—l|Zilk71) ~ P(mfl1:k—2|zi:k72)P(mf]k—1|Zzi:k71) (44)

q1:k—1

Each user k considers only the information of its own and (k—1) previous users up to current time
for symbol detection which is reflected in the approximation in the first term above. Applying the

same successively will lead to

k—1
P(m,, |25y 1) ~ []POme,|Zi.) (45)
k=1

The ’symbol-mode’ association is {b,,m,} (refer to (20)). The decoded symbol matrix of user s

is B, € {b, ® In,, q € {1,2,...,Q}} and Q is the number of system modes (hypotheses). The
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¢, [ilil, =, [ili]
b, [i].b, [
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¢, [ifil, x,ili]
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b, [il.b i)

z,[i]

& goer [HHLE o 2 [ili], B o]

& gerrac L Z ooy | LB .y ]
. S [ilil, = ( [ili
z[i] IMM-SIC L2 i)

By 1T, by, 1]

Fig. 3. Diagrammatic representation of the Multiuser IMM-SIC Detector. Each block is an IMM-SIC filter.

MAP estimate of user symbols of xth user at time-instant ¢ will be,

A~ —

B[] = bgpur @1y,
where ¢MAP = argmax P(ml[i] = m,|Z?,) (46)
q

Having approximated the probability densities such that detection for user £ utilizes information
from only the first k users, we still have a mixture density with Q¥ components. In order to
reduce this complexity, the previous users’ mode probabilities, P(m2N|Z§m) for k =1,...,k—1,
are approximated by the MAP estimate mfIM ar (46) of each user. Therefore for the k-th user’s

estimation cycle,

p i i 1 if quK :mq’llAAP _ _
(m! |Z7..) = . forg=1,...,Qand sk =1,..., k-1 (47)
" 0 if mi_ # mguar

Substituting (47) in (43) leads to,

plzxlillerli], my, . 235, 2141 [i]) = /P(Zk[i]lchk[iLmzkamzf{;qaZﬂlazlzk—l[i])
ek illmiar, Zy_y)der g [i] (48)
The integration is now over a single sequence composed of the MAP modes of (k — 1) users and
associated channel gains. In general consider the joint MAP distribution of a set of (k) users,
p(cixli]|mi ,Z},), a similar approximation to (45) can be made.

i

pleralillmiyar, Zig) = plerwt[illealil miyar, Zig)p(erlillmiyar, Zi)

%

p(crp—1[1] |m3f{fk{ﬁa Zip—1)p(ckli] |mf]{\:4kAp, Zi.)
k
[T pleelilimi e, i) (49)

k=1

%

The individual terms in the product on R.H.S. is still conditioned on all k users’ MAP modes.
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TABLE II

ONE CycCLE OF IMM-SIC ESTIMATOR AND DETECTOR FOR MIMO SYSTEM AT TIME-INSTANT (i) FOR MS k

Consider the following BPSK system (for ¢ =1,2,...,9Q):

Cokli+1] = Frcqr[i] + wili]
zili] = LirAr[by ® Ing]ck[i] + Vili] + Vili]
—_——
Hy 1]

with ¢g,x[0] ~ N[0, Zo], F = diag(F1,...,Fk). Mode mj, represents a possible symbol pair (a hypothesis of the
system) transmitted by user k at time-instant i.

1) Interaction/Mixing of the estimates (for ¢ =1,2,...,9): ¢

mixing probability: Halq [1] = Taq' p1gr, k[l —1]/ Z Taq Mo k(i — 1]
q'=1
mixing estimate: ] Z Cqr k[ — Ulpg)qr 1]

mixing covariance: @

Z0all = Y [Zorali = 10+ [€0li] = &g ali = 1] [&04li] = &grnli = 1] | pigrorli

a'=1
2) Mode-conditioned filtering (for ¢ =1, ....... Q):
predicted state from i — 1 to i: &g, [ili — 1] = Fye) ,[i]
predicted covariance: 3 [ili — 1] = Hy x 30 [i|H, ; + pUJINTNR
measurement residual (55): eq.x = zx[i] — Hg 1 Cq,k[2]7 — 1] — Vi [4]
residual covariance (55): Squc = Hg kg x[ili — 1/H, , + Var(Vi[i]) + pInynp
filter gain: Kqx = ¢ x[ili — 1]H, ,Sqx "
updated state : €q,[i]i] = Cq,k 7]t — 1] + Kq k€q,k
updated covariance: X x[i]i] = Zq.[ii — 1] — KgxSq kK, &
likelihood function: A, x[i] = WGXP[—%GZkSq,k*Gq,k]
3) Mode probability updates and bit detection:
mode probability: pa.k[i] = = Z Taq P k[t — 1]

decision rule: GMAP — max g, [¢] and Bk[z] = BqlzcviAP ® Ing; [,Bk,o[i], ey ﬁk,Ns []]] = BqlzcviAP
q

4) combination of estimates:

Q
aggregated estimate : &li] = Z[cq ki8] pq. 1 ]1]
q=1
Q
aggregated covariance: s, 1 = 33 w[ili] + [exli] — € klilill[en[i] — &q,plilil) Tptg,nli]
q=1

This can be simplified further. Consider an individual user ’s state distribution conditioned on

its own MAP mode,

p(cﬁ[i”mzﬁ’mpﬂzin Zp CH[/L |m MAP7 q1,i 10 ln)P(mfh:,{,JZi:nfl) (50)

The summation is over all possible mode sequences Q*~!. From (45) and substituting for the MAP
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estimates of previous users (from (47)) approximates the above to,
p(Cn[i] |mf1}<‘/’AP7 Zzln) ~ p(Cn[i] |mf1}<‘/’AP ’ mZ{VfKA_ﬁa len) = p(clﬁ [Z] |mﬁ1{‘{KAPa len) (51)

Noting the approximate equivalence above, (49) can be written as,

k
plevlilmpar, Z1y) =[] plexlillmiyar, Zi..) (52)

k=1

essentially a product of the individual users’ MAP mode conditioned state distribution. This

completes the approximate decomposition. Substituting the above approximation in (48) gives,

pCanlillenlil, i, 2w i) ~ [ planlillen il m migsas, 230 21 l)
k—1
[T pleclilimiyear, 22 ) dexli (53)

k=1
The term p(z[i]|cyk[i],ml, 2%, ) is obtained from (39). With the prior assumed Gaussian
and with the approximations made above, the posterior distribution of the channel for user &,

p(ck [i]|mf1£“p, Z! ) is a Gaussian distribution and is expressed as,
p(ck[i”méfchP’ Zzlk) ~ N(Ck[t] gMAP k[’L| ] EqMAP k[ | ] quAP) (54)

Note that the mean &,mar ;[i]i] and variance X, mar ;[i]i] will be given by the MAP mode filter for
user . The approximations reflect the fact that channel estimation for user k£ use only observations
up to k, even if we have observations up to user K, and that the estimated symbols are treated as
the true transmitted symbols. This is essentially a decision feedback process that approximates the
MUI and noise as a single Gaussian distribution. From being a mixture distribution substituting
(54) in (53) and performing the marginalization leads to the distribution on the L.H.S. of (53)

being approximated as a single Gaussian with,
plalillexld, mg,, Zi3) 21 [i)) ~ N(zeltl Hplileld] + Vili] , HoulilSeliHgui] "
+Var{V,[i]|Z3), 2161 [i]} + p2INg ) (55)
where,
H,ili] = LgrArlby ® In,]; and Vi[i] = H 1 1[il€grar 15 1[ild]

Var{Vk[iHZiTkl,Z1:k71[73]} = Hp 16 1[6]8gmar 11 [6]i]Hy 11 [0 "

Hiie 1 = Lpik 1Ane 1By fi]
éqMAP’lzk_l['”i] = [éqMAP,I[’i|’i]H, e C MAP [ 1[ | ] ]
EqMAP’Lk,I[’”’L.] = diag(quAP’l[’”Z.], e ,Z MAP [ 1[ | ]) (56)
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Equivalently the gth hypothesis at k-th recursion of the IMM-SIC filter becomes,

Zk[Z] = LchAk[bq & INR]Ck[i] + Vk[’L] + \_/'k[’L] (57)

where V[i] is approximated as a Gaussian distributed random variable, V[i] ~ N(V[i]; Vii] ,
Var(Vy[i])), which gives the MUI term. The IMM-SIC estimation cycle is repeated recursively for

i

each user. Therefore for user k£ there will be Q parallel filters each matched to a mode me,

(see Fig.
2) and the weights associated with each mode are the posterior mode probabilities P(m}, |Z.,,)
(46). See Table II for algorithmic details. Fig. 3 gives a diagrammatic representation of the IMM-
SIC decoder for a K-user MIMO system. The IMM-SIC detector does not rely on the ordering of

users based on the received powers. While it is applicable to a MIMO system, it can be extended

to a ST coded system as well.

C. IMM-SIC for MIMO STC System
Considering an Alamouti ST coded system, at time 27 the received signal (13) will be,
K . 1 1o
. bk,l [Q’L] INR 0 C [Q’L]
r[2i] = ZAk [ 52,1 Sllc,1 } . :’1 .
k=1 0 bk,2[21)Iny, ck,l[%]

for a 2 x 2 MIMO system with L = 1 and ST coding (1) where each transmission stream ng

+v[2i] (58)

has an independent spreading sequence. The received signal r[2i] is matched filtered (16) and
noise whitened (17) to yield z[2¢] with transition matrix IIp used to compute mixing probabilities.

Similarly at time 27 + 1,

K br.1[2i + Uly, 0 cp1[2i +1]

r2i+1]=3" Ay [ sl, s ]
o 1 1 0 b 220 + 1]In, cji1[2i + 1]

+ v[2i + 1](59)
the received signal r[2i+ 1] is matched filtered and noise whitened to yield z[2i 4 1] with transition
probability matrix IT; (refer to Table I) used to compute mixing probabilities. The IMM-SIC
decoder for STC system is given in Table III. By posing the evolution of discrete states of the
MIMO ST coded system as a Markov transition we are able to call the IMM-SIC recursively
at step 27 and 27 + 1, using transition probability matrices Iy and II; (see Fig. 4), latter with
probabilities which is a reflection of the symbol level ST coding at the transmitter. The channel
estimate and variance is tracked during time-instant 2 and 2¢4+1 and at each time V., is updated
for user k£ 4 1. At time 2¢ 4 1 the original bit sequence {f . [i]}g::[] is decoded.

1) Computational complezity: The number of multiplications required per iteration for each

user of the IMM-SIC detector is analysed here. In the following table n = LNgrNr represents

the total number of elements in the state vector and a reciprocal operation is equivalent to three
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SIC Steps for each user
Hy - 1[) = Lis—1Avp 1 B[]

20

Number of multiplications

(k= 1)n*>+ (k—1)n=0(n?

SIC Steps for each measurement component/user

h = [Hy,1:6-1[8]](n; —1) LN g+ (nr— 1) L+, 1:(k=1)n 0

[Vild]]l;*" = hé&gar 1 q[ild] (k=Dn

Var(Vi[)]}"" = hE map qp_[ililh" (k—1n+ (k- 1)n?

Total operations count 2(k — 1)n+ (k — 1)n% = O(n?)

Kalman filter steps for each mode/meas. component/user

hy " = [Ho k[i])(ny - 1) LN g+ (np - 1)L+, 1m n?+n
Bl = 1] = 9 4[d] + pi,

Dy = 2, i — T2 .
K = D g D 4 Var (Vi 4 gl me 3
B nllil = Sy lili— 1] ~ DT "
g = 2 =B T i = i = 1) = [V
q.k[ild] = & i [i] + kyommet n

Total operations count 3n?2 +4n + 3 = 0(n?)

multiplications. With Q modes in total, the operations count per measurement component per user
is O(9n?+n?) = O(9Qn?) and with n measurement components for each user, the total operations
count per user is O(Qn? + n?) = O(Qn?). Therefore for a K user MIMO system the complexity
at each time is O(K Q[LNrN7]?) linear in number of users K and number of modes Q = SN7.
The IMM filter based decoder (Approximation 5.1) has Q% models (number of filters) at each
time instant and the computational complexity will be O(QX (K LNrN7)?), exponential in number
of users K. The optimal multiple model decoder will have QX% models (number of filters) at each
time instant and the complexity will be O(QX!(K LNrNr)?), exponential in number of users K

and time period 7.

VI. SIMULATIONS

1) IMM-SIC symbol detector for MIMO system: The performance of IMM-SIC is analyzed
through computer simulations. We consider a three-user (K = 3) flat-fading CDMA channel with
processing gain of N = 31. Each transmitter is assigned an independent signature waveform.
The user-spreading waveform matrix S is generated randomly from a set of gold sequences. Each
user has two transmitters (N = 2) with each i.i.d. sequence transmitted from each antenna
arriving via L paths at each receiver (N = 2). The i.i.d. sequence is considered a special case
of a sequence from a Markov source and all elements of the transition probability matrix is 1/Q.

BPSK modulation is employed, and hence S = 2, therefore [Il],, = é = 0.25 where Q = SN,

BPSK signals are obtained by generating binary random i.i.d. signals with uniform distribution.
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TABLE I1I

IMM-SIC ALGORITHM FOR MIMO STC SYSTEM.

IMM-SIC is initialized at i=0 with P(mg, |Z{..) = & and cq,x[0] ~ N (To, £o); For sequence length i =1,..., M
the IMM-SIC is called recursively.
FOR ti=2i:2i+1 DO
FOR k=1,...,K DO
1. All Kalman filters are initialised with mixed channel estimates. Mixing probabilities (weights) g4 [ti] are
P(m iy~ mg )Pm i~ ZE T

given by, P(m;i_ !

jmts 25571) =

T used in calculating the mixed estimates

ti—1 : ti—1 ti—1
E(‘i:lp(mqik Imf;K)P(quc 1235 )

(or prior distributions), p(c,[ti]|m. , Zi 1) ~ N(&0 .[ti], =9 .[ti]) for Vg,. P(m;’;1|mfli) = m,, where
Taq' = [Holqqr or [II1]4e on ti = 24 or 2¢ + 1 respectively.
FOR ¢. =1,...,Q DO
2. Compute one-step predictive update for g.th Kalman filter,
Eqnltilti — 1] = Fue) o[til;  Bgultilti — 1] = Hou[ti] B9 [t Hy x[ti] T + p2Ing ng
3. Compute innovation likelihood for user s, p(z.[ti]|mi: , Zt 1, z1.c—1[ti]) ~ N (€q,n, Sq,x) With g, Sq,x
This step is very similar in spirit to the standard successive cancellation [41]. Note that in IMM-SIC
not only the MUI estimate term is cancelled via V .[ti] but its uncertainty is also considered via
Var{V . [ti]|Z} !, z1.,—1[ti]}; essentially a soft cancellation procedure (55),(56).
4. Compute one-step Kalman filtering update, &, [ti|ti] = E{cg,«[ti]|mL. , Z, };
Sy nltilti] = Covieyu[tillmL., 21, }.
END
5. Compute all the mode probabilities;
o x[ti] = Pl 128,) = Lp(asltillmti 24z [t]) T3 _, P(mly " |mi ) P(m!i |24 ).

6. MAP estimation; ¢ 4" = max, g . [ti] and B,[ti] = b

gMAP ®Ing

7. Compute V,41[ti] as in (56) using the estimates {B [ti], &, map [tilti], B map [tilti]} associated with the
MAP mode, myar, ie., Voga[ti] ~ N (Vipalti], Var{ Vi [t]| 251, 20[ti]}), [bei[ti], bio[ti] = Byarar.
8. IF mod(ti,2) == 1,
Symbol detection : [Bx.0[i], Bx.1[i] = B;i‘”“P 0 _01
END
END

END

The complex channel gains are generated by passing two zero mean Gaussian signals through a
3-rd order Butterworth filter with fading rate fpT (cutoff frequency of the filter corresponding
to normalized Doppler frequency) to construct a signal model with complex, rapidly time-varying
channel gains. The complex and real components of additive Gaussian noise is generated by two
normal distributions of zero-mean and variance p?, therefore the noise variance p? = 2p%. We

assume transmitted signal powers A] = ... = AR™ = A = 5 and are known at the receiver.
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Fig. 4. Diagrammatic representation of IMM-SIC for MIMO STC system at time 27 and 27 + 1.

BER performance was measured via 20 Monte-Carlo simulations of sequence length T" = 50000.
The BER performance for increasing fading rates was compared. Fading parameters considered
were fpT = 0.0015,0.03,0.05, second and third fading rates are fast fading scenarios. Driving
nose variance is a design parameter and values which gave reasonable BER performance for above
fading rates was chosen, i.e., p2, = 107°,4x 1073, 6 x 10~2 respectively. Measurement noise variance
p? can typically be measured at the receiver and is varied in the simulations for different SNR!
conditions. Phase ambiguity is inherent in joint channel tracking and symbol detection and pilot
symbols were used to resolve this ambiguity. Most importantly, insertion of pilot symbols is only to
effectively resolve the phase ambiguity, and not due to the need of effectively obtaining the fading
channel gain. The data sequence for each user is segmented in to blocks of length (N, + N;) Ny
symbols. At the beginning of each segment the channels are estimated based on the N,Np pilot
symbols and then the N; Ny symbols are detected while simultaneously continuing to estimate

ne,nr\ N7, NR
the channels {¢; 7"}, =17 .

For faster fading rates, the spacing of the pilot sequences needs
to be denser in order to keep the performance close to the known channel bounds. Therefore for
fpT = 0.0015,0.03,0.05, N, = 10 and N; = 50,20, 10 respectively. As seen by the results in Fig.
5(a) IMM-SIC detector operates in low SNR region of < 15dB with good BER performance for fast
fading channels. When pilot symbols are transmitted, only the mode probability and state vector

H
2

!Signal-to-Noise Ratio (SNR) = A2w; E{} is the expectation operator.
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(a) Average BER of {by n,} vs. SNR. (b) Averaged Normalized MSE for user #1.

Fig. 5. IMM-SIC for MIMO system with K =3,L =1, Ny = 2.

associated with the pilot symbols have a nonzero probability. Thus the phase ambiguity is resolved
at that time since the competing hypotheses with incorrect phase are eliminated. At high SNR and
low fading rate the incorrect hypotheses have less effect and therefore phase certainty lasts longer.
Differential encoding is another option available for resolving phase ambiguity resulting in a blind
implementation, i.e. pilot symbols are not needed. The two bit streams of each user, {by 1,b; 2} are
decoded simultaneously at each time-instant. Channel is tracked using a Random-Walk channel
model with disturbance variance p2. This value was chosen by trial and error based on which
value gave the best tracking performance and Fig. 5(b) shows the normalized Mean-square-error
(MSE)? for different fading rates. The results show that the IMM-SIC is an online algorithm
which tracks the varying characteristics of the channel and is well suited for channel estimation,
and simultaneously detecting the symbols transmitted, in fast fading scenarios of fpT" = 0.03,0.05.

Next example is for a MIMO system with multipath where Ty ; = 0, Tpo = 1, T3 = 2.
As shown in Fig. 6 (a), in this case IMM-SIC has improved performance over a system with no
multipath. This is expected as multipath provides more information regarding the transmitted
symbol sequence but MSE performance decreases due to multipath fading, shown in Fig. 6(b),
compared to MIMO system with no multipath shown in Fig. 5(b). The design parameter p2, is a
trade-off between BER performance and channel tracking. The results in Fig. 7(a) is for channel

fading of fpT = 0.03 and shows channel tracking capability of IMM-SIC for the chosen value

?Average Norm. MSE, = NTlN}}{Zf:ZT:l ivle NMSE;""" where MSE,""[i] = (ciy""[¢] — éx" [i]);

S, E{MSER " " MSER Y " 4]}

Sy Bl i e T

NMSE}*"" =
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Fig. 6. IMM-SIC for MIMO system with K =3, L =3, Ny = 2.

P2 =4 x1073.

2) MIMO symbol estimation with Per-survivor processing: For performance comparison, we use
the PSP detector, a sequence estimation algorithm with a trellis of possible transmitted symbols
with a fixed trellis size. Even though the complexity of a PSP algorithm will be prohibitive for
medium to large users it is a maximum likelihood (ML) based data detector and we evaluate
its performance in comparison to the IMM-SIC algorithm using the same signal model. Actual
physical channel memory is unknown and the channel is tracked using the same channel model
as for the IMM-SIC algorithm (18). That is each state corresponds to the current symbol set at
each time-instant and sequence length considered by the PSP is L,, = 1. For a BPSK transmission
(S = 2) the size of the symbol constellation is 2 but for Ny = 2 the constellation size at each
time-instant will be SV = 4. Therefore the total number of states in the trellis for a MIMO
system will be P = 4"~ = 4. In a purely blind signaling environment it has been demonstrated
that there exist equivalent sequences of the symbol data [43], [44] which traditionally necessitates
the use of pilot symbols. We adaptively track the channel states using PSP-KF [43], [44] based
algorithm (channel tracking is by P parallel Kalman filters operating in parallel). For each state
at each time instant there are 4 transitions emerging from it and going to 4 different states: each
transition corresponds to one of the 4 possible choices for the symbol pair [i)k’l,i)k’Q]. There is
a branch metric associated with each transition and the PSP-KF detector has one survivor per
state selected based on maximum branch likelihood metric out of 4 possible transitions. A one-step

Viterbi algorithm is then performed to calculate the accumulated metrics of the states at each time-
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Fig. 7. IMM-SIC and PSP-KF for MIMO system. fp7 =0.03, K =3, L =1, Nr =2, N, = 10, N; = 20.

instant. The measurement equation for the Kalman filter will be (57). The channel estimates &[i|]
and 33,[i]i] at each state are updated by a Kalman filter initialized with the posterior estimates of
the survivor state leading to it.

Channel is estimated adaptively during N; information symbols and N, pilot symbols. The N;
information bit pairs are detected based on the ML solution of the accumulated metric. Roughly
speaking, the best survivor (with the ML solution) is extended back along the sequence length
which gives a sequence of surviving states which represent the symbols transmitted by Ny =
2 transmitters during each time instant. The BER performance of this estimation algorithm is
compared with IMM-SIC detector in Fig. 7(b). Computational complexity at each time instant for
the PSP-KF presented here for a single user is O(Pn?), whereas IMM-SIC for a single user has a
complexity of O(Qn3) where P = 4~ Q = 4,n = LNy Ng. The PSP-KF can be implemented for
L, > 1 but this increases exponentially the number of states in the trellis diagram. For a fast fading
channel tracked using a Random-Walk model the IMM-SIC algorithm has better performance than
the PSP-KF estimator, as shown in Fig. 7(b).

3) IMM-SIC symbol detector for MIMO STC system: Considering a MIMO system with STC,
simulations are carried out for Ny = 2, using Alamouti STC. The Markov property of the STC
signals determines the transition probability matrix II; with elements of the matrix taking values
of either 1 or 0 and the Markov property of the original sequence determines the matrix Ilg. The

results are compared against a lower performance bound with known channel information. Each
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Fig. 8. Comparison of IMM-SIC for MIMO and MIMO STC systems. L =1, Ny = 2.

user’s symbol streams {by 1, by 2} are decoded simultaneously at each time-instant and the average
results are shown in Fig. 8(a).

Lastly, the IMM-SIC algorithm is evaluated for increasing number of users K = 2,...,15. The

average BER over all K Ny transmission sequences is computed. The load on the system is K]]VVT X
100%. As seen in Fig. 8(b), performance decreases with increasing load for a fast fading channel

at low SNR with maximum possible load being K = 15(= 96.77%) users for N = 31 and Ny = 2.

VII. CONCLUSION

A recursive suboptimal algorithm is derived using Bayesian statistics with approximations made
at two levels. Firstly, an approximation that truncates the consideration of the symbol sequence to
just the current and past symbol is made, but still requiring all users information to be available
together, leading to the interacting multiple model (IMM) algorithm. Secondly, an approximation
that considers only the previous users estimated symbol and channel information, similar to the
successive interference cancellation (SIC) procedure, is made, leading to the derivation of the
IMM-SIC detector. The computational complexity of the algorithm is O(K Qn?), and is linear in
number of users and time. Importantly, the algorithm can be applied recursively to space-time (ST)
coded transmissions, avoiding the need for processing after receipt of all the ST coded transmitted
signals as in most literature on STBC MIMO systems, due to its ability to handle Markov source
generated symbol sequences. The paper illustrates how the detector processes the received signals

of the Alamouti transmission matrix in a recursive manner.

November 18, 2005 DRAFT



IEEE TRANS. SIGNAL PROCESSING, VOL. X, NO. XX, XXXX 200X 27

The results show that detection of Alamouti encoded symbol transmission in time-varying
channels is ideal for the IMM-SIC detector, especially for joint channel estimation and symbol
detection occurring concurrently with estimates directly influencing each other. The detector (with
or without STBC) has only Q@ = SN7 system modes at each time-instant and has better perfor-
mance at reduced complexity compared to the per-survivor sequence detector. IMM-SIC detector
with ST decoding had better performance than IMM-SIC leading to the conclusion that the mode
transitions based ST decoding is advantageous for systems with ST coded transmissions where the
received signals are processed recursively. Despite the reduced computational complexity, IMM-SIC

detector has shown significant performance over a wide range of fading rates and noise levels.
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