Logic in Computer Science:
tool-based modeling and reasoning about systems

Michael Huth
Department of Computing and Information Sciences
Kansas State University
Manhattan, KS 66506-2302

Abstract - Recent years have brought about the development of
powerful tools for verifying specifications of hardware and soft-
ware systems. By now, major companies, such as Intel, IBM,
AT&T, Siemens, and BT have realized the impact and impor-
tance of such tools in their own design and implementation pro-
cesses as a means of coping with the ever-increasing complexity
of chip and software designs. This necessitates the availability
of a basic formal training that allows Undergraduate students to
gain sufficient proficiency in using and reasoning with such tool-
animated frameworks. We present an existing course, “Logical
Foundations of Programming™, that aims at meeting these edu-
cational goals. After describing inherent challenges that such a
course faces, we then evaluate this course in the larger context
of what logical frameworks, if any, should be taught and where
they may be placed in a computer-science related undergradu-
ate curriculum.

I. OUR COURSE
A. Mission statement and course description

The course CIS301 Logical Foundations of Programming,
initiated by Dr. David A. Schmidt and required of our Com-
puter Science and Information Systems majors since 1993, has
as current objectives [14] to
“study the fundamentals of symbolic logic: how to write proofs
and how to reason semantically. We apply those acquired tech-
niques to model computer systems and to check whether these
models satisfy formally specified properties. We further use
these skills for the design and verification of algorithms.”

The topics we chose for acquiring the knowledge and skills
above are [14]:

1. Logic as in ““general education”. We study propositional
logic as the prototypical logic formalism. We ask: “What consti-
tutes valid arguments? How can we demonstrate that certain “in-
ferences” have a valid argument?” We design and utilize a proof
calculus (natural deduction) and a semantics based on truth ta-
bles to address these issues (3-4 weeks).

2. Predicate logic. The design and use of database query lan-
guages and their supporting tools depend on a thorough under-
standing of the syntax and semantics of formulas with quanti-
fiers such as “there exists somebody who is older than forty,
drives a Lexus, and likes Thai food”, or “all taxpayers of Man-
hattan are Wildcat fans”. The realization of polymorphically
typed languages and general data abstraction or encapsulation
facilities, or software specification languages also require mech-
anisms for which predicate logic provides a sound design frame-
work. We study the syntax and semantics of predicate logic and

understand how to evaluate its formulas over their correspond-
ing notion of models. We also discuss its proof theory and prove
important quantifier equivalences. (3-4 weeks).

3. Verification by model checking. Protocols, networks, and
distributed systems can generally not be described by code of
some deterministic programming language. Such systems ex-
hibit concurrent behavior and they are typically reactive in the
sense that their behavior depends on what the environment can
offer (e.g. “Is the printer busy?””). Computation tree logic (CTL)
is currently one of the popular frameworks used in verifying
properties of concurrent systems. We study its syntax and se-
mantics, and use those insights to design an automated verifica-
tion algorithm which takes a description of a system and speci-
fications of expected behavior as input and checks whether that
system meets those expectations. That algorithm is the founda-
tion for a tool, the symbolic model verifier (SMV) [20], which
we use to evaluate some basic designs, e.g. simple elevator sys-
tems and a mutual exclusion protocol (3-4 weeks).

4. Program Verification. Given a program P, written in
some imperative programming language with if- and while-
statements, what can we say about its input/output behavior
without having any run-time information about its variables?
We develop a proof calculus for verifying triples (¢) P (v),
where ¢ and ¢ are statements about the store (e.g. describing
the values of variables) before, respectively after, the execution
of a program P (2-3 weeks).

5. Binary Decision Diagrams. We explain how Boolean func-
tions and their logical manipulations can be implemented, of-
ten very efficiently, as binary decision diagrams [3], [4], [5](1-2
weeks).

After successful completion of this course, we expect students
to be able to actively apply logical frameworks in modeling and
reasoning about computer systems, be they realized in hardware,
implemented in software, or embedded in technology that inter-
acts with some open, non-controllable, environment.

B. Prerequisites and background

Students are expected to have completed an introductory pro-
gramming course. About one third of all enrolled students have
also taken a second programming course on algorithms and data
structures. However, about 15% of the enrolled students do not
major in computer science or a related discipline, though they
mean to switch to such majors; their background ranges from
history, chemical and mechanical engineering, to business, biol-
ogy, and horticulture majors. This is problematic as the course
is customized toward freshmen or sophomores with a computer-
science related major.

C. Mission accomplished?

The challenge that most profoundly threatens a successful re-
alization of the objectives stated in Section I-A is that one would
need at least twenty weeks to adequately cover all topics above.
Consequently, one has to de-emphasize certain aspects and tech-
niques which students hopefully will master sufficiently when
meeting them again in subsequent courses. The identification
of which points to skim should be guided by the intent of the
mission statement, i.e. omissions should not critically impair
students ability to apply logical frameworks to model and rea-
son about systems. Therefore, our current approach is to skip
the justification of meta-results, but, whenever possible, to state
those results and reflect on their significance. For example, we
do not prove the soundness and completeness of a natural deduc-
tion calculus for propositional logic, but we discuss its meaning
(e.g. soundness as a design validation technique and as a tool
for showing the non-existence of a proof). This compromise
re-instantiates the old computer-science debate about how much
of the “what?”, the “why?”, or their potential interdependencies
one should teach. Related to that, it also raises the familiar issue
of whether one should bundle such topics into a single course,
be it early or rather late in the curriculum, or whether one should
teach these topics exclusively in those courses that actually ap-
ply them. We return to these important questions in Section 1V.

We often teach this course by omitting, among other things,
a proof of the undecidability of validity in predicate logic, a
discussion of intuitionistic propositional logic, the design and
correctness proof for a labeling algorithm that is the basis for
the verification tool SMV, a discussion of a more complex con-
currency protocol (the alternating-bit protocol), more advanced
temporal logics (e.g. CTL*), program termination arguments
that rest on more complex well-founded orderings, relative com-
pleteness issues for Floyd-Hoare style programming logics, and
the important application of binary decision diagrams for build-
ing the model checking tool SMV. While some of the omitted
topics may be too advanced for a sophomore level, their ab-
sence from our course basically means that they may not be
discussed in the remainder of students’ program of studies. In
a more tightly integrated curriculum, one would introduce this
more advanced material at the appropriate places of subsequent
courses.

Il. CONNECTIONS TO OTHER COURSES

The typical contents of our course establish connections, be
they implicit or explicit, to other courses that are usually re-
quired in a computer-science curriculum; these topics also cre-
ate opportunities for an improved integration of concepts that
cross undesirable dividing lines of individual courses.

A. Algorithms and data structures

We cover pseudo-code for a recursive, and staged, algorithm
that computes for any propositional logic formula an equivalent
formula in conjunctive normal form. The design and verifica-
tion of the design features recursion, mathematical induction,
grammars in Backus-Naur form, and complexity issues pertain-
ing to the satisfiability and validity of formulas. The algorithm
is staged in that it first transforms away all implications, then
pushes all negations down to the level of atoms, and finally

solves the problem for formulas of the much simpler grammar
pu=L|pAN¢| oV ¢, where L ranges over literals (atoms and
their negation). One could conceivably cover the design and ver-
ification of algorithms for satisfiability, such as Horn formulas,
or heuristic SAT solvers, such as Stdlmarck’s method [23], [22].
In predicate logic, one could feature algorithms for computing
certain quantifier normal forms.

Exposure to a labeling algorithm for finite-state verification
illustrates depth-first backwards search in a directed graph; this
search is recursive and the recursion is driven by the logi-
cal structure of the specified behavior, written as a CTL for-
mula. The description and evaluation of small designs with
the tool SMV makes students appreciate how such graphs can
be modeled with a modular guarded-command language with
non-deterministic assignment. The discussion of program logics
contains the linear algorithm for computing minimal-sum sec-
tions of integer arrays [12] as a case study. Finally, binary deci-
sion diagrams [3], [4], [5] require algorithms that implement the
familiar logical operations on such diagrams. Some of these al-
gorithms illustrate dynamic programming at an accessible level.

B. Programming languages and their design

The design of a program logic for a simple imperative lan-
guage challenges students to reason about “method-like” code
they would use within objects in the object-oriented program-
ming paradigm. They learn how to compute necessary pre-
conditions to ensure desired postconditions, based on a simple
heuristics for finding and validating useful invariants for while-
statements. The tool SMV exposes them to a domain-specific
programming language for describing finite-state systems.

The natural deduction system for propositional logic, as pre-
sented in [16], encourages students to think of conditional judg-
ments and the stating and discharging of temporary assumptions
as a statically scoped language with local declarations, whether
they know such terminology, or not. Although freshmen and
sophomores may only have an intuitive understanding of type
checking and type inference in programming languages, they by
and large appreciate that these concepts correspond to “grad-
ing” their proofs and “finding” such proofs, respectively. These
connections to language design methodologies carry over to the
extended natural deduction system for predicate logic, dealing
with hypothetical and parametric judgments. *

The final point may seem too trivial to be mentioned here,
but it is of paramount importance and seems to pose the most
common conceptual challenge to students who take this course.
We refer to the ability to read and understand a general syntactic
or semantic rule scheme and to apply it consistently in a concrete
instance by matching the patterns of the rule with those of the
given instance. For example, natural deduction has two rules for
introducing disjunctions. One of them says that we can prove
¢ V 1 by first proving ¢. It is crucial to realize that this makes
¢ bound in ¢ V %, but 4) can be chosen to one’s liking. Similar
binding issues occur with all other rules of that calculus and
its extension to predicate logic. We are often surprised at how
students find the process of pattern matching difficult and how
they frequently struggle with parts of proofs that are uniquely

LOur course does not use such technical terminology, but students learn these
concepts implicitly as operational activities.

determined by the given rules.

C. Compilers and flow analysis

While compiler courses do not take a prominent place in
todays undergraduate curriculum, the discussion of a model
checking platform and its temporal logic could, at a later stage,
be enriched by investigating the connections between conven-
tional flow analyzes, e.g. those used during the optimization
phase of a compilation, and model checking. It is well known
that model checking tools can be used for bit-vector based data-
flow analyzes of programs. On the other hand, one can conceive
established techniques for flow analysis as being model checks
based on safe abstractions of the underlying program graph; see
[21] for a technical reference. Admittedly, such discussions may
be confined to graduate programs, but they also point to fruitful
connections to traditional topics in automata theory and formal
languages.

D. Discrete mathematics and mathematical logic

Discrete mathematics courses for computer-science related
majors are most often taught as service courses by mathemat-
ics departments. Even if we assume that enrolled students are
all computer-science related majors — which may not be the
case for the vast majority of institutions, the outlook of such a
course and its covered techniques may be ill-suited for preparing
our students for a variety of reasons:

1. Such a course may not adequately stress the computational
nature and the fundamental algorithms associated with the dis-
crete structures it features. For example, little is achieved if stu-
dents know what a conjunctive normal form is, but if they do not
know how to transform any formula into such a form and why
such a transformation may be problematic.

2. The logic component of such a course may present log-
ical formalisms that are remote from the connections to the
computer-science issues aforementioned. For example, using
a Hilbert-style presentation for reasoning about propositional
logic is likely to alienate a typical computer-science student.

3. The course may stress independence results over undecid-
ability results, reflecting the likely bias of a mathematician, ver-
sus that one of a computer scientist.

4. Mathematical induction may be presented and applied only
to structures that are “indigenous” to mathematics, such as inte-
gers and polynomials, without seeing this principal in action on
more general recursively generated syntax, such as trees, lists,
parse trees of formulas, etc. Students may never see an example
of a context-free grammar in such a course.

5. A traditional mathematical style of presentation may intro-
duce a lot of technical terminology that the student will never
utilize, and possibly not appreciate, in subsequent courses.
For example, students may learn about “the law of non-
contradiction” and something called “modus ponens”, the first
being the name for a theorem (= (¢ A —¢)) which students are
able to prove, if needed, the second being the elimination rule
for implication; each logical operator comes with elimination
(data decomposition) and introduction (data construction) rules.
In contrast, our course introduces a carefully chosen core of
essential terminology; further technicalities are presented only
where they are required by the applications.

6. The overall “culture” of such a course may make it diffi-
cult for students to take the subject matter seriously and to later
transfer their acquired knowledge to courses in their field.

E. Hardware architecture and networking courses

The discussion and use of a model checking framework on
simple concurrent systems can be re-activated in a basic net-
working course, when liveness and safety issues of concurrent
protocols arise. Similarly, hardware design and architecture
courses can make use of this verification framework and the ma-
terial on binary decision diagrams to model and analyze simple
circuits.

F. Software engineering

An advanced undergraduate software engineering course may
focus on methodologies for specifying and analyzing software
artifacts in a very general sense. For example, the Object Con-
straint Language (OCL), a subset of the industry standard Uni-
fied Modeling Language (UML), enables developers to write
constraints over object models, allowing for the formulation of
specific and complex rules that govern todays business mod-
els. Apart from the study of design patterns, software architec-
tures, the SCR specification method, etc, and the use of theorem-
proving tools, one can present the model-checking methodology
as an additional, complementary or synergistic, approach. For
example, Marsha Chechik at Toronto University already features
this methodology in such a course [6]. Tools for model checking
software are beginning to appear. For example, Bandera [1], [9]
is a tool-set for translating Java programs to the input of existing
model checkers, such as SMV. As these tools mature, they may
be introduced into undergraduate courses as a powerful means
of testing and verifying (concurrent) programs.

I1l. WHY TOOLS ARE NEEDED
A. The hype

The applied component of our course introduces, at an acces-
sible level, the model-checking framework SMV that finally has
made its way from research papers to a suitable textbook [16];
see also [7] for a more comprehensive and ambitious graduate
textbook on the model-checking methodology. Reasoning about
the security and reliability of reactive systems represents a major
technological challenge that can no longer be adequately met by
ordinary scenario-driven testing methodologies. Since such au-
tomated verification frameworks are at present a hot topic in in-
dustry, graduates fluent in this material are highly sought. SMV,
developed by Ed Clarke’s PhD student Kenneth McMillan in
1992 at CMU, and related tools are, e.g., used in the develop-
ment of Intel’s, IBM’s, and AMD’s low- and high-end chips;
in NASA’s verification of autonomous control systems that use
automated reasoning techniques to provide high levels of auton-
omy and adaptability, part of the Deep Space projects; and are
now routinely used in industry at large.

B. Taking the hype aside

Getting a job at NASA, INTEL, or Bell Labs based on the
mastery of such tools for the design and evaluation of computer
artifacts is something that may seem promising to students from
top U.S. and international schools. Undergraduate students who

are already determined to pursue a Master or Ph.D. degree in
computer science may also be well motivated to actively learn
the use of such tools. One has to keep in mind, though, that
our main educational constituency is comprised of people who
want a “nice, well paid, and perhaps not too challenging” job in
the service-related IT industry. Although Microsoft is currently
looking into the application of static-analysis tools on software
products prior to their beta-release, it is unlikely that such tools
will enter the workplace of a typical software engineer in the
near future. So why should we teach logic based on such tools
at all? To provide a richer context, we first list some represen-
tative and well-argued concerns about the use of tools in such a
course:

1. If the tool is for finite-state verification, it typically has three
vital components: a system-description language, a behavior-
specification language, and a decision algorithm (hopefully with
a debugging facility for negative replies). While students may
think of the latter as a black box, they need to appreciate the
details of the former two and utilize them to formally model the
actual systems and behaviors under consideration. At the very
least, this process includes the translation of plain English be-
havioral requirements into the respective specification formal-
ism. Unfortunately, most tools, while often being share-ware,
are rather complicated and have system-description languages
that are either too expressive or too specific, and their under-
standing usually requires the detailed reading of actual research
papers, making this generally into a matter for graduate school,
at best. The use of SMV in conjunction with [16] and the on-line
repository of specification patterns [11], however, may mitigate
or even avoid such problems altogether.

2. If the tool is a theorem prover or a proof editor, students are
likely to struggle with subtle or not so subtle differences in syn-
tax and presentational means between a tool and the conven-
tional nomenclature of underlying concepts as discussed in a
textbook. In a more radical approach, one could conceivably
teach, say, propositional logic by only exposing students to an
appropriate tool, but the supplementary use of a white board in
class and the usage of tools that are customized for other tasks
(e.g. model checking) re-introduce the need for transfer skills
that identify concepts across different representational and no-
tational media. This is certainly problematic at the sophomore
level. Our current course does not make use of any supporting
tools for natural deduction for the reasons cited.

3. Atool may give students a false sense of mastery of a subject
matter. For example, theorem provers for propositional logic
are likely to be able to prove most classroom problems without
requiring user interaction. Even if some interaction is required,
little is achieved if students know how to “run” the tool, but if
they are not able to produce the “deterministic” parts of proofs
on their own.

4. Tools may gain an authority, through a history of usage, that
lacks any foundation. Saying that a protocol correctly imple-
ments a mutual-exclusion lock ““because the tool said so™ is use-
less at best, if not outright dangerous. Tools only allow the eval-
uation of mathematical models of systems, so students need a
fundamental understanding of a tool’s mechanisms if they want
to re-translate a tool’s findings on the actual system, e.g. by re-
interpreting debugging information pertaining to a discovered
design flaw, in a meaningful way. This concern also applies to

positively verified models, as the actual system may be flawed
despite the flawless model; the flaw may well reside in the mod-
eling process, which tools can only guide and support to some
degree.

5. The use of powerful tools may make it difficult to assign
homework problems that are neither too advanced nor “trivial”,
giving the capabilities of the tool(s) in question. For example,
using tools for finite-state automata, one may find it hard to test
students abilities of reasoning, from first principles, whether two
regular expressions are equivalent. Two obvious alternatives are
to “trust” students’ claim that they don’t use the tool for such as-
signments, or the assignment of more complex and sophisticated
projects that cannot be done without the tools, but that also need
human interaction and guidance for their successful conclusion.
None of these options are compelling in an undergraduate set-
ting.

Second, we mention a few salient reasons for favoring the use
of tools in such a course.

1. Some of the concerns raised above may not apply if the ex-
posure to such tools happens rather late in the curriculum or if
students already had previous exposure and experience with the
involved concepts. In that case, one would expect students to
move more easily between different representational dialects of
the same concepts.

2. Tools, if designed in a thoughtful manner, are generally be-
lieved to aid greatly in the visualization and animation of con-
cepts, even more so if these concepts are mathematically ab-
stract entities. For example, letting students “play” with a SAT
solver for formulas in conjunctive normal form makes them ap-
preciate what those formulas are and why deciding their satisfi-
ability is such a hard problem.

3. More importantly, as todays hardware and software artifacts
are arguably the most complex things ever made by humans,
we critically depend on tools to perform tasks that we basically
know how to do, but whose scale defies our abilities to correctly
carry out these tasks. We cannot check a system with millions or
billions of computational states with the exclusive aid of paper
and pencil.

4. Tools create an opportunity to establish well defined inter-
faces of usage between different courses. A tool that was used
in a basic logic course, say, can be re-activated in a subsequent
networking or software engineering course. Instructors may not
have to spend too much time on lecturing about the tool, but can
instead focus on the problems meant to be analyzed with the
support of such a tool. Throughout a degree program or profes-
sional career, knowing a tool could roughly be valued as much
as knowing a domain-specific programming language.

5. Most logic-based tools are currently share-ware or may come
on a CD with a reasonably-priced textbook; thus, their use does
not impose more financial burden on the already strained bud-
gets of computer science departments and their students.

Our course is supplemented by a worldwide-web tutor [13]
and ancillary online material for instructors [15]. If we con-
sider such on-line resources as additional tools, the pros and
cons above largely apply to them as well. In assessing the pros
and cons of using logic-based tools in the undergraduate com-
puter science curriculum, it is apparent that a simply yes/no
answer is uncalled for. Whether to use a specific tool, or not,
depends on multiple factors. For example, are the concepts in-

volved in the tool taught for the first time? Is the tool opaque or
can, respectively should, one sketch how it animates the com-
putational concepts in a way that is accessible to undergraduate
students? Is a “fully automatic” tool desirable? Does a tool
actively involve students in the process of modeling and eval-
uating systems? Etc. In summary, we believe that a judicious
choice and placement of logic-based tools can make a computer-
science related undergraduate curriculum more integrated and it
can demonstrate to students that logical frameworks, their de-
velopment, and use are one of the main conceptual backbones
of their discipline.

C. Other tool options

Jon Barwise and John Etchemendy developed software, with
an accompanying manual, that explains predicate logic at work
[2]. Using this tool to support existing textbooks potentially
causes the compatibility problems we cited earlier. Various free-
ware or commercial SAT solvers are available over the internet.
A competitor to SMV, based on automata-theoretic techniques
is SPIN with its system-description language Promela [19]. A
verification tool based on a process-algebra formalism is FDR2
[24]. Daniel Jackson and John Chapin use SAT solvers as the
computational core engine to debug software architectures that
are described as a mix of program interfaces and formal spec-
ifications. The language Alloy and its supporting tool, Alcoa
[17], are used in the validation of the design of CTAS, a NASA-
developed software system for air-traffic control [18]. Among
other tools, we use Alcoa and Bandera in our graduate courses
on specification and verification within our Master of Software
Engineering program [10]. We leave it at mentioning these tools
as a small sample of the available support for teaching and using
logic-based frameworks; for a more comprehensive list of exist-
ing courses and the tools they use see [8]. The choice and place-
ment of such tools, among other things, should be cognizant of
the pros and cons discussed in Section I11-B.

IV. SHOULD LOGIC TOPICS BE BUNDLED?

During a panel discussion in the Special Year on Logic and
Algorithms at the Science and Technology Center for Dis-
crete Mathematics and Theoretical Computer Science [25] (DI-
MACS), Kim Bruce, Phokion Kolaitis, Daniel Leivant, and
Moshe Vardi discussed “Logic in the Computer Science Cur-
riculum”. Although the panel did not focus on the use of tool-
based frameworks, it hinted at many points that have already
been addressed implicitly in this paper. As for the proper place-
ment of logic in a curriculum, the panelists don’t offer a uniform
answer, confirming that this question ought to have answers that
are determined by local constraints and objectives.

In fact, placing logic in a computer-science related degree
program seems to create an inherent dilemma. In an ideal world,
one would introduce the respective logical framework right in
that segment, where it is used for the first time. For example,
one would teach predicate logic right before or “through” an in-
troduction to a database query language, such as SQL. In that
same ideal world, students will also have no difficulties with
mastering such formalisms, say, within a week, so that one can
swiftly move toward their competent applications. Middle- and
lower-tier institutions, are a far cry from such an ideal world. In-
stead, they often critically rely on having a lower-level course,

such as an Introduction to Discrete Mathematics, in which one
means to expose students to all the logical frameworks they will
need in their program of studies. For propositional logic, for ex-
ample, this typically involves some “hand-waving” about how to
prove things, and then maybe a more rigorous treatment of this
logic’s semantics via truth tables. As such courses are typically
“out-sourced” to a mathematics department, instructors of sub-
sequent courses, in which logical frameworks are being used,
have little if no knowledge about what really happened in that
introductory course; or students will simply have forgotten that
material, recalling merely an unpleasant and ill-motivated math-
ematical experience. That way, computer-science degree pro-
grams miss a unique opportunity to present logic-based frame-
works as a means for modeling and reasoning about computer
systems at large. But doing an adequate job at the latter may well
require placing these frameworks into the higher-level courses,
where they are put to effective usage; whence the dilemma.
This dilemma is aggravated by the fact that current computer-
science programs, more often than not, seek a reduction of the
total number of credit hours or are pressured to teach more “real
world” courses. Our freshmen/sophomore, three credit-hour
course Logical Foundations of Programming attempts to deal
with this dilemma in as graceful a way as possible.

V. CONCLUSION

The problems associated with teaching logic in a computer-
science curriculum will not go away with the availability of tool
support for logical frameworks. But we believe that the advan-
tages and opportunities of such tools outweigh their potential
negative effects within a computer-science program. In light of
the recent availability of suitable textbooks, and freely available
tools, we encourage American and international computer sci-
ence degree programs and the relevant professional associations
to re-evaluate their need and placement of logic-based frame-
works for modeling and reasoning about computer systems in
their curriculum designs or recommendations.

ACKNOWLEDGMENTS

We want to thank Matthew B. Dwyer and Allen Stoughton for
valuable comments on drafts of this paper.

REFERENCES

[1] Bandera. Extracting safe finite-state models from source code.
www.cis.ksu.edu/santos/bandera/, Spring 2000.

[2] J. Barwise and J. Etchemendy. Tarski's World: Version 4.0 for MS Win-
dows/Book and Disk. CSLI Publications, January 1994.

[3] R.E.Bryant. Graph-based algorithms for boolean function manipulation.
|EEE Transactions on Computers, C-35(8), 1986.

[4] R. E. Bryant. On the Complexity of VLSI Implementations and Graph
Representations of Boolean Functions with Applications to Integer Mul-
tiplication. |EEE Transactions on Computers, 40(2):205-213, February
1991.

[5] R. R. Bryant. Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. ACM Computing Surveys, 24(3):293-318, September
1992.

[6] M. Chechik. ECE 540 - Software Engineering II.
www.cs.toronto.edu/~chechik, Spring 2000.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, January 2000.

[8] Indiana University Computer Science Department. Formal Methods Ed-
ucation Resources: Course Pages. URL: www.cs.indiana.edu/formal-
methods-education/Courses/, Spring 2000.

[9] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu,
Robby, and H. Zheng. Bandera: Extracting finite-state Models from Java

URL:

URL:

[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]
[25]

Source Code. In Proceedings of the 22nd International Conference on
Software Engineering. IEEE Computer Society Press, June 2000. To ap-
pear.

M. Dwyer. CIS 771 - Software Specification. URL:
www.cis.ksu.edu/ dwyer/courses/771, Spring 2000.

M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Property specification pat-
terns for finite-state verification. In Mark Ardis, editor, Proceedings of the
Second Workshop on Formal Methods in Software Practice, pages 7-15,
March 1998. URL: www.cis.ksu.edu/santos/spec-patterns/.

D. Gries. A note on a standard strategy for developing loop invariants and
loops. Science of Computer Programming, 2:207-214, 1982.

M. Huth. On-line tutor for C1S301 Logical Foundations of Programming.
URL: www.cis.ksu.edu/~ huth/lics/tutor/index.html, Spring 2000.

M. Huth. Syllabus for CIS301 Logical Foundations of Programming.
URL: www.cis.ksu.edu/~huth/301/syll.html, Spring 2000.

M. Huth. Textbook home page for CIS301 Logical Foundations of Pro-
gramming. URL: www.cis.ksu.edu/~huth/lics/, Spring 2000.

M. Huth and M. Ryan. Logic in Computer Science: Modelling and rea-
soning about systems. Cambridge University Press, January 2000. URL:
http://iwww.cis.ksu.edu/~huth/lics/.

D. Jackson. An Intermediate Design Language and its Analysis. In
ACM S GSOFT Sxth International Symposium on the Foundations of Soft-
ware Engineering, number FSE-6, pages 121-130. ACM SIGSOFT, ACM
Press, November 3-5 1998. Lake Buena Vista, Florida.

D. Jackson and J. Chapin. Software Design for Air Traffic Control. URL:
www.lcs.mit.edu/research/projects/project?name=9915, Spring 2000.

Bell Labs. On-the-fly, LTL model checking with SPIN. URL:
http://netlib.bell-labs.com/netlib/spin/whatisspin.html, Spring 2000.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

D. A. Schmidt and B. Steffen. Data-flow analysis as model checking of
abstract interpretations. In G. Levi, editor, Proceedings of the Fifth Static
Analysis Symposium, volume 1503 of Lecture Notes in Computer Science.
Springer Verlag, September 1998.

G. Stalmarck. System for determining propositional logic theorems by ap-
plying values and rules to triplets that are generated from boolean formu-
las, January 1994. United States Patent. Patent Number 5,276,897. Date
of Patent: Jan. 4, 1994.

G. Stdlmarck and M. Saflund. Modeling and verifying systems and soft-
ware in propositional logic. In B. K. Daniels, editor, Safety of Computer
Control Systems (SAFECOMP’ 90), pages 31-36. Pergamon Press, 1990.
Formal Systems. Fdr2. URL: www.formal.demon.co.uk/FDR2.html,
Spring 2000.

Rutgers University. DIMACS Symposium: Teach-
ing Logic and Reasoning in an lllogical World. URL:
http://dimacs.rutgers.edu/Workshops/Logic/cornellprogram.html#papers,
Spring 2000.

