
Agents as Multi-threaded Logical Objects

Keith Clark1 and Peter J. Robinson2

1 Department of Computing, Imperial College, London, England
klc@doc.ic.ac.uk

2 School of Computer Science and Electrical Engineering, The University of
Queensland, Australia
pjr@csee.uq.edu.au

Abstract. In this paper we describe a distributed object oriented logic
programming language in which an object is a collection of threads de-
ductively accessing and updating a shared logic program. The key fea-
tures of the language, such as static and dynamic object methods and
multiple inheritance, are illustrated through a series of small examples.
We show how we can implement object servers, allowing remote spawning
of objects, which we can use as staging posts for mobile agents. We give
as an example an information gathering mobile agent that can be queried
about the information it has so far gathered whilst it is gathering new
information. Finally we define a class of co-operative reasoning agents
that can do resource bounded inference for full first order predicate logic,
handling multiple queries and information updates concurrently.
We believe that the combination of the concurrent OO and the LP pro-
gramming paradigms produces a powerful tool for quickly implementing
rational multi-agent applications on the internet.

1 Introduction

In this paper we describe an object oriented extension of the multi-threaded
Qu-Prolog described in [7]. We show how this can be used to quickly implement
multi-agent applications on the internet in which agents have both reactive and
pro-active behaviours that utilize quite rich inference systems. The different
behaviours execute concurrently, as separated threads of an active object that
implements the agent.

The original Qu-Prolog [12] was developed as an implementation and tac-
tic language for interactive theorem provers, particularly those that carry out
schematic proofs. It has built-in support for the kinds of data values typically
needed when writing a theorem prover in Prolog: object variables - the variables
of the logical formulae being manipulated, substitutions for these object vari-
ables, and quantified terms, terms denoting object level formulae with explicit
quantifiers over the object level variables. As further support, the unification al-
gorithm of Qu-Prolog unifies such quantified terms up to alpha-equivalence, that
is it knows about equivalence up to changes of quantifier bound object variables.
It also carries out the occurs checks before binding a variable. This is essen-
tial for implementing sound inference systems. Qu-Prolog is the implementation

A.C. Kakas, F. Sadri (Eds.): Computat. Logic (Kowalski Festschrift), LNAI 2407, pp. 33–65, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

34 Keith Clark and Peter J. Robinson

language of the Ergo theorem prover [1], which has seen substantial use in the
development of verified software.

Motivated by a desire to implement a multi-threaded, multi-user version of
Ergo, we then added multi-threading and high-level inter-thread communication
between Qu-Prolog threads running anywhere on the internet [7]. Each thread
has a internet wide unique identity similar to an email address. It also has a
message buffer of received but unprocessed messages which it can periodically
search for messages of interest. Communication between threads in different
Qu-Prolog processes makes use of the store and forward ICM communications
system [17] developed for the April language [18]. This offers robust middleware
for distributed symbolic applications. As an example, it can be configured to
automatically store messages for threads running on hosts, such as laptops, that
are temporarly disconnected, delivering them when the laptop reconnects.

In [7] we describe the multi-threading and the inter-thread communication
facilities in detail and show how they can be used to implement a distributed
deductive data base in which each data base comprises the clauses of a program
being executed by a multi-threaded Qu-Prolog process. The clauses in each data
base can contain remote calls that are queries for relations defined in other data
bases. Such a remote call takes the form DB?Call, where DB is the global identity
of the query interface thread for the other Qu-Prolog process. DB typically has
a value such as interface:qupDB@‘zeus.doc.ic.ac.uk’. The interface thread
can fork a new query thread for each received remote query. Moreover, although
we did not illustrate this in [7], different deductive data bases can do inference
using a different logic, a non-resolution inference system or even a modal logic.
Since each can have rules that call for sub-proofs in other deductive data bases,
we can easily implement distributed hybrid reasoning systems.

Threads in different invocations of Qu-Prolog can only communicate using
messages, but threads within the same invocation can also communiciate via the
dynamic clause data base. Asserting or retracting a clause is an atomic operation
with respect to the multi-threading. In [7] we showed how we can use the shared
dymamic clauses to implement a Linda-style tuple space manager in Qu-Prolog.
In addition, threads can be made to suspend waiting for a particular clause to be
asserted. Suspension waiting for a clause of a certain form to be asserted enables
one to implement daemons. A daemon is a thread that is launched but which
immediately suspends until the trigger clause is asserted.

In [8] we sketched how multi-threaded Qu-Prolog could be used to implement
DAI applications. With this type of application in mind, we have recently added
a concurrent object oriented layer to Qu-Prolog. This OO layer, which in this
paper we shall refer to as QuP++, is transformed into the base Qu-Prolog using
the term expansion pre-processing facilities of Qu-Prolog. It allows OO software
engineering methodology to be used to construct distributed Qu-Prolog appli-
cations, in particular multi-agent applications.

In the next section we give a brief overview of the main features of QuP++.
This is followed by section 3 which is an example based introduction to pro-
gramming in QuP++. In section 4 we show how object servers allowing remote

Agents as Multi-threaded Logical Objects 35

spawning of objects can be defined and used to create and manage mobile objects
and agents. In section 5 we introduce the features of Qu-Prolog that allow the
implementation of non-resolution inference. We show how they can be used to de-
fine a reasoning agent that can do resource bounded inference for full first order
predicate logic both to answer questions about what it believes and to check for
possible inconsistency before it adds new information to its belief store. We then
elaborate the agent to a co-operative reasoning agent that can ask other agents
to engage in sub-prrofs on its behalf. In section 6 we conclude with mention of
related research.

2 Overview of QuP++

QuP++ is a class based OO language with multiple inheritance. A class is a
named collection of static Qu-Prolog clauses with an optional state component
comprising a collection of dynamic predicates and state variables, the latter
being Qu-Prolog atoms. The stucture of a class definition is:

class C isa [S1,.Si-[r/2]..,Sn] % optional inheritance
state [d/3,a:=9,b,{k(g,h). k(j,l)},...] % state components
clauses{ % sequence of static clauses
p(...):- ...
...
p(...):-super?p(...).
....
}private [d/3,..] % preds that are private

The dynamic predicates (of the object state) must be disjoint from the static
predicates of the class and any of its super-classes. Instances of the class share
the static clauses but do not share clauses for their dynamic predicates and do
not share state variable values.

A class definition with a state component is the template for an object. An
object is an instance of the class. The static clauses of the class are the fixed
methods of the object. Objects are active, each is implemented as one or more
independently executing threads. The clauses for the dynamic predicates and
the values associated with the state variables are the state of the object. Default
initial clauses for the dynamic predicates can be given in the class definition, e.g.
the clauses for k/2 above, as can default initial values for the state variables,
e.g. a:=9. A default value for a state component given in a class C over-rides
any default value given for the same state component in a super-class of C. A
state variable value can only be accessed and updated from the methods of the
class, and clauses for a dynamic predicate can only be asserted and retracted by
a class method. However, the dynamic predicates of an object can be queried in
the same way as the static predicates. Externally they look like extra method
names. They are methods with dynamic definitions unique to each object.

Static predicate names and state component names can be re-used in differ-
ent classes, they are treated as distinct names. Inheritance, by default, makes

36 Keith Clark and Peter J. Robinson

all the static predicates of the super-classes of a class C static predicates of C.
If an inherited predicate is redefined in a class, the new definition over-rides
the inherited definition. However, the combined superclass definition for a pred-
icate p/n can always be accessed from inside C with a call super?p(...). Using
super?p(...) we can make the new definition extend what would have been
the inherited definition, as in:

p(...):- ...
...
p(...):-super?p(...).

More precisely, the definition for p/n given in a specific super-class S can also be
accessed with a call super(S)?p(...). If the predicate p/n is not redefined in
C, the definition that is inherited in C is exactly the same as if it were redefined
in C as:

p(X1,..,Xn):- super(S1)?p(X1,..,Xn);
super(S2)?p(X1,..,Xn);
...
super(Sj)?p(X1,..,Xn).

Here S1,..,Sj are all the superclasses of C from which inheritance of p/n has not
been explicitly suppressed. Inheritance of the clauses for p/n, from a specific
super-class S is suppressed by using of S-[p/n], rather than S in the isa list of
super-classes.

A call p(...) in a static clause of a class C always denotes a call to the
definition for p/n of the class C, even if the call is executed inside an object O
that is an instance of a sub-class SubC of C that has redefined p/n. In contrast, a
call self?p(...) in a static method of C executed by O will be evaluated using
the definition for p/n of SubC.

Inheritance unions the state components of a class C with the state com-
ponents of all its superclasses. That is, all state variables of a super-class are
automatically state variables of C, and all dynamic predicates of a super-class
are automatically dynamic predicates of C.

By default, all the static and dynamic predicates of a class are visible, that is
they can be used in queries to the object instances of the class. Both static and
dynamic predicates can also be declared as private, in which case they can only
be called from methods of the class and its sub-classes1. Queries to instances of
the class cannot access the clauses for the private predicates. Such a call to a
private predicate of an object will fail.

An object instance of a calls C is created with a call of the form:

new(C,...,O)

where O is an unbound variable which will be assigned a system generated glob-
ally unique identity for the new object. O is actually the identity of the object’s

1 Private predicates are inheritable and can be redefined in sub-classes.

Agents as Multi-threaded Logical Objects 37

default execution thread. This thread will immediately call the init method
of class C, if this is defined. This can be used to launch sub-threads of object
O using the QuP++ object thread fork primitive. The object sub-threads can
communicate with one another either by explicit messages using the inter-thread
message primitives of Qu-Prolog, or by updating O’s dynamic clauses or state
variables. Special QuP++ self assert and self retract primitives enable any
thread within an object to update the dynamic clauses of the object. The QuP++

primitives *= and := enable any object thread to access and update the value
of one of the object’s state variables2. The init method can also be used to an-
nounce the object’s presence by remote calls to other objects, for example a call
to a directory server registering some description of the object. On termination
of the init method, the default thread enters a loop in which it repeatedly ac-
cepts and evaluates remote calls for O. It suspends if there are no pending remote
calls. It becomes the object’s external interface thread - its reactive component.

A remote call is a query Q sent to O from another concurrently executing
object, anywhere on the internet. The query can be sent as a call O?Q, or a call
O^^Q3. (The differences between the two forms of call will be explained shortly.)
Q can be an arbitrary Prolog query using any of the visible predicates of the class
of O or any Qu-Prolog primitive4. Multiple remote calls, whether synchronous or
asynchronous, are queued at an object in time order of arrival. The object will
respond to them in this order.

A ? call is a synchronous communication, the client querying thread Cl sus-
pends until an answer is returned, which may be a fail message. Backtracking in
the client thread will generate all solutions of the remote call5.

A call O^^Q is an asynchronous remote call. Q is executed by O as a single
solution call. There is no automatic answer response from O to such a query, no
client variables in Q will be bound as a result of the call, and on the client side
the call always immediately succeeds. Usually Q will cause some update of the
state of O, or cause O to execute a remote call. This remote call could be either
a synchronous or an asynchronous call back to the object from which the query
was sent. The architecture of a QuP++ object is depicted in figure 1.

During the evaluation of any remote call received by an object O, the global
identity of the object QO from which the query came can be found by executing
a call caller(QO). This will unify QO with the global identity of the querying

2 Execution of the dynamic clause and state variable update and access primitives is
an atomic action. However it is a useful discipline to restrict update of a particular
dynamic predicate or state variable to a particular sub-thread and have other threads
only access the value.

3 There is also a O??Q form of call with the semantics as given in [7]. We shall not use
this form of call in this paper.

4 In addition, any predicate of a Qu-Prolog program can be used in Q if we know that
it will have been loaded by the Qu-Prolog process in which O is running. To the
QuP++ application these are seen as extra Qu-Prolog primitives.

5 For a call O?Q all solutions to Q are immediately found by O using a findall call and
returned by O to Cl as a list. There is then local backtracking in Cl over the different
solutions in the returned list.

38 Keith Clark and Peter J. Robinson

Object O
of Class CInterface

thread
with id O

state shared
by all object threads

sub-threads

All incoming
remote calls
for O

outgoing
synchronous call
answer
returned to
sub-thread T

possible response -
remote call from O" to O

synchronous query

asynchronous query

access to or update of shared state

thread forking

O"

outgoing
remote
calls

call of a class method

Static class methods
shared by all
objects of class C

T

asynchronous call
to object O"
asynchronous call
to object O"

asynchronous call
to object O"

Fig. 1. A QuP++ object

object, which remember is the global identity of its interface thread. This will be
the case even if the query came from another sub-thread of QO. The pair of calls,
caller(QO),QO^^RCall, thus sends an asynchronous query RCall to the object
QO which sent O the remote call it is currently evaluating. If O executes this pair
of calls whilst evaluating an asynchronous call, O^^Q, from QO, the return call
QO^^RCall is effectively a response to QO for the query Q. Use of ^^ remote calls
and caller/1 enables objects to have asynchronous conversations as well as
client server interactions. This is particularly useful when the objects implement
agents.

Tests on the value returned by a caller/1 call can also be used to restrict
use of certain methods to known objects, or objects satisfying certain properties.
For example, a method:

p(...):- caller(QO), allowed_to_call_p(QO), ...

causes a remote call to p to fail if the querying object is not allowed to call p.
allowed to call p/1 can be a dynamic predicate initialised when the object is
created, and perhaps updated by calls to a method:

Agents as Multi-threaded Logical Objects 39

allow_to_call_p(NewO):-caller(QO),allowed_to_call_p(QO),
self_assert(allowed_to_call_p(NewO)).

from objects already allowed to call p/k.

3 QuP++ by Example

Let us begin with a simple example program. This is a class definition for a person
object. In this case there is no inheritance, except from a default system class
that defines a set of standard method predicates for all objects. One of these is
the reflective method predicate/1 which can be used to query an object to find
its visible predicates. A call O?predicate(V), where V is a variable, will return
one at a time the names and arities of O’s visible predicates. Another system
class predicate is class/1. A call O?class(C) will unify C with the class name
of O. There are two other reflective predicates: myid/1 and mystate/1 which
are actually used in the above class definition. They can only be called from a
method. myid/1 unifies its argument with global identity of the object that calls
it. mystate/1 returns the entire current state of the object that executes the
call as a list.

class person
state [firstname/1,surname/1,age:=0,sex/1,child/1,parent/1]
clauses{
adult :- age*=A,A>18.
family_name(N):-surname(N).
likes(O):-child(O).

new_child(Fn,Sx,O):-
nonvar(O),!,
self_assert(child(O)).

new_child(Fn,Sx,O):-
surname(Sn),
myid(Me),
new(person,

[firstname(Fn),surname(Sn),sex(Sx),{parent(Me). }],
O),

self_assert(child(O)).

get_married_to(Sp):-
myid(Me),
Sp?(class(person);class(married_person),spouse(Me)),
mystate(St),
become(married_person,

[spouse(Sp)|St]).

} private {surname/1}.

40 Keith Clark and Peter J. Robinson

Let us now look more closely at the above class definition. The state decla-
ration:

state [firstname/1,surname/1,age:=0,sex/1,child/1,parent/1]

tells us that instances of this class will record the state of the object using clauses
for five dynamic predicates and one state variable age. The state variable has a
default initial value of 0. When we create an instance of the class we can give
values for the dynamic predicates and we can override the default value 0 for
age. For example, the call:

new(person,[firstname(bill),surname(smith),sex(male),age:=23],O1)

will create a new instance of the person class, with the clauses given in the
state list second argument as initial definitions for its dynamic predicates, and
the value 23 for its age state variable. The clauses for the dynamic predicates
and the state variable initialisations can be given in any order. Notice that this
person object does not have clauses defining parent/1 and child/1.

When an object is created it can be given a set of clauses for some or all
of its dynamic predicates and values for some or all of its state variables. For
a dynamic predicate these either over-ride or add to any default clauses given
for the predicate of the class definition. The choice is signalled by the way the
clauses are given in the object creation call. For a state variable any value given
in the object creation call always over-rides any default value it might have in
the class definition.

new/3 is one of two QuP++ primitives for creating new objects. The above
call to new/3 returns the global indentity of the person object as the binding
for O1. We can access O1’s state as recorded by its visible dynamic predicates by
queries such as:

O1?sex(S)

which binds S to male. We cannot directly access the age of O1 since this is
recorded as the value of a state variable. However we can use the adult method
to indirectly access its value. For example,

O1?adult

will succeed. The call age*=A in the adult clause uses the QuP++ primitive
*=/2 to access the current value of the age state variable. This call can only be
used in a method. An attempt to use it in a remote call such as O1?age*=A will
fail.

A call:

O1?predicate(P)

will in turn bind P to each of:

new_child/3, adult/0, family_name/1, get_married_to/1,
likes/1, firstname/1, sex/1, child/1, parent/1

Agents as Multi-threaded Logical Objects 41

surname will not be returned as it was declared as private to the class. Its
definition can be accessed indirectly via the family name method. We have a
separate family name definition because, when we define the married person
subclass, we shall redefine this predicate.

O1?class(C)

will bind C to person.
The person class has a method new child/3 that both updates the state of

the object that executes it and may create a new instance of the person clause,
which is the object representing the recorded child. The asserted child/1 clause
records the child object’s global identity. A new person object is created if the
third argument of the new child/3 method call, the object identity of the child,
is given as an unbound variable. Thus, a call:

O1?new_child(mary,female,O2)

will result in a new person object with the global identity the returned binding
for O2 being created with state:

[surname(smith),firstname(mary),age:=0,sex(female),parent(O1)]

The new child/3 second clause is used and this calls the dynamic predicate
surname/1 to access the surname for object O1 in order to define the surname/1
dynamic predicate of the new person object that it creates. It also calls the
QuP++ primitive myid to find the global identity of the object executing the
method6. This is in order to give an initial clause for the parent/1 dynamic
predicate of the new person object, which is deemed to be a child of the object
executing the new child method. Finally the new child/3 method adds the
clause child(O2) to the state of O1 using the QuP++ primitive self assert.
self assert rather than assert is used to ensure that the dynamic clauses for
the same predicate in different objects are kept distinct.

Now a query:

O2?firstname(F)

or the equivalent queries:

O1?child(C),C?firstname(F)

O1?(child(C),C?firstname(F))

6 In many OO languages the returned binding for Me is denoted by use of the term
self. In QuP++ self can only be used as the object identity of a call, as in
self?p(..). If we want to embed its value as an argument of a remote call, as
here, we must find its value using myid/1. As we remarked earlier, a self?p(...)

call can be used within a method of a class C to signal that the latest definition of p
should be called in case the method is being executed by an instance of a subclass
of C which redefines p. This is a standard use of self in OO languages.

42 Keith Clark and Peter J. Robinson

can be used to find the first name of the new child object. The last two queries
differ with respect to where the call C?firstname(F) is executed. In the first
query it is executed in the object that executes the call O1?child(C), and in
the second it is executed in the object O1. The second is a remote call contain-
ing a remote call. Remember all the objects are executing as separate threads
which repeatedly accept and execute remote calls. The differences between the
evaluations of the two queries is depicted in figure 2.

O1

O2

Client
child(C)

C=O2

firstname(F)

F=mary

Client
O1

O2

child(C),
C?firstname(N)

C=O1,N=mary

firstname(N)

N=mary

Fig. 2. Remote calls

Let us now look at the method get married to/1. This does not create a
new object but metamorphises the person object that executes it into an instance
of the married person class. This is as a result of the call to the the QuP++

primitive become/2. This can be called by a static method of any object O and
when the method that calls it terminates the object O becomes an instance of a
new class. Importantly, it retains the same global identity. The first argument
of the become/2 call is the name of the new class, the second is a list, just
like the list argument of a new/3 call, giving values for some or all the state
components for the object as an instance of the new class. In the case of the
become/2 call of the get married to/1 method the new state list is the state
list returned by executing the system class method mystate with the clause
spouse(Sp) added as a new component. Notice that the method only succeeds
if Sp is an instance of the person class (i.e. as yet unmarried), or Sp is an instance
of the married person call that has the person being told to get married (the
Me returned by the call myid(Me)) as its recorded spouse. A call to mystate/1
unifies its argument with a list giving the current complete state of the object O
that executes the call. The state of an object O as a married person is its state
as a person object with an extra clause for a new dynamic predicate spouse/1.

Agents as Multi-threaded Logical Objects 43

This clause records the identity of the object to whom the married person is
married.

As one can imagine, the married person class is best defined as a sub-class
of the person class. Its definition is given below. The isa person-[get mar-
ried to/1] of the class declaration means that all the static clauses and state
components of the person class, except the clauses for get married to/1 which
is not inherited and family name/1 and likes which are redefined, are automat-
ically included in the married person class. Note that the sub-class redefines
the likes/1 predicate as:

likes(O):- spouse(O);super?likes(O).

This redefinition calls the definition that would be inherited so it just extends
the person definition for likes/1. Note that get married to/1 is removed from
the methods of the married person class.

The sub-class also has a clause for the predicate init. When a class contains
a definition for init, which is always deemed as private to the class, it is called
immediately after any instance of the class is created, either by a new call, or
a becomes call. Only when the init method terminates will the object accept
external queries.

class married_person isa person-[get_married_to]
state [spouse/1]
clauses {
init:- spouse(Sp),

myid(Me),
Sp?spouse(Me) -> true;

Sp^^get_married_to(Me).

likes(O):- spouse(O);super?likes(O).

family_name(N):- sex(male) -> surname(N) ;
spouse(Sp),Sp?surname(N).

get_divorced:-
mystate(St),
remove(spouse(Sp),St,NSt),
myid(Me),
(Sp?spouse(Me)->Sp^^get_divorced),
become(person,NSt).

}.

Let us see what the effect of the init is if we execute the conjunction:

new(person,[firstname(june),surname(jones),
sex(female),age:=20],O3),

O3^^get_married_to(O1)

44 Keith Clark and Peter J. Robinson

where O1 is the previously created male instance of the person class. The call
O3^^get_married_to(O1) is an asynchronous call. It always immediately suc-
ceeds whether or not the call get married to(O1) succeeds in the object O3. No
answer bindings are ever directly returned from an asynchronous call and so the
query of the call usually contains no unbound variables, as here.

When O3 receives the query it will eventually execute:

become(married_person,
[spouse(O1),firstname(june),surname(jones),
sex(female),age:=20])

and this causes O3 to become an instance of the married person class. This in
turn, will cause the automatic execution of the init method of this class by O3.
This will query O1, the recorded spouse of the metamorphised O3, to see if O1
‘knows’ that its spouse is the object executing the init method, i.e. O3. The
init method finds the global identity O3 by executing the call myid(Me). Since
O1 is at this time an instance of the person class, it will have no clauses for
spouse, and the call Sp?spouse(Me) will fail. This will result in the execution
by O3 of the asynchronous remote call:

O1^^get_married_to(O3)

and this will cause O1 to metamorphise into an instance of the married person
class, with recorded spouse O3. Now the init call executed when O1 becomes a
married person will find that its spouse O3 does ‘know’ that it is married to O1
and the distributed activity started by the init executed by O3 will terminate.
The init method ensures consistency between the state components of the two
married person objects.

Note that it is essential that the remote call to get married to/1 of the init
method is executed asynchronously. Before the remote call terminates, the ob-
ject that executes the call will itself be queried. The interaction between O1 and
O3 is as depicted in the figure 3. If O1 executed the remote get married to(O1)
query to O3 synchronously, that is if it suspended until the remote query suc-
cessfully terminated, it would not be able to respond to the synchronous query
spouse(O3) from O3. The two objects would deadlock, and neither would be
able to complete their init methods.

Finally let us look at the get divorced method for a married person. This
causes a married person object O to metamorphise back into a person object
and ensures that the recorded spouse, if it ‘believes’ it is still married to O,
similarly reverts to being a person.

4 Object Servers and Mobile Agent Objects

Below is a definition of an object server class. Instances of this class can be
sent messages to remotely spawn objects and can be used as stepping stones by
mobile agent objects.

Agents as Multi-threaded Logical Objects 45

person object
 O3

person object
 O1

get_married_to(O1)

become(married_person,
 [spouse(O1),...])

married_person
 object O3

get_married_to(O3)

become(married_person,
 [spouse(O3),...])

married_person
 object O1

spouse(O3)

spouse(O1)

object metamorphosis

fail

succeed

Fig. 3. Object state synchronisation

An object server accepts requests to create new objects for a particular
class keeping track of which objects it has created, in which class, in a dynamic
predicate class of/2. It also allows objects to be created with given public
names, as we shall describe below. It keeps track of these public names in a
dynamic relation used names. The two dynamic predicates are not private, so
both can be queried by other objects. Use of such an object server assumes that
the class definitions for all the classes for which it may need to create instances
have been loaded by the Qu-Prolog process in which the object server is running.

class object_server
state [class_of/2,used_name/1]
clauses {
newob(C,Inits,O) :-

var(O),
new(C,Inits,O),
self_assert(class_of(C,O)).

newob(C,Inits,N,O) :-
atom(N),
var(O),
\+ used_name(N),
new(C,Inits,N,O),
self_assert(used_name(N)),
self_assert(class(C,O)).

}.

The class has two methods, one for newob/3 and one for newob/4. The first
takes the name of the class and the state components and creates a new object
with a system generated identity O that will be returned to the client providing

46 Keith Clark and Peter J. Robinson

the method was invoked as a synchronous query. The method for newob/4 has
an extra argument, N, which must be an atom. It then calls the four argument
new primitive passing in this symbol N. This will use N to construct the global
identity O. For example, suppose we have an instance of the object server
class running on a machine ‘zeus.doc.ic.ic.ac’ within a Qu-Prolog process
with the name objects. The Qu-Prolog process can be given this name by a
command line option when it is started. If we send it the remote synchronous
query:

newob{person,[firstname(bill),...],billS,O)

then O will be bound to:

billS:objects@‘zeus.doc.ic.ac.uk’

providing billS is not already a used name for an object already created by the
object server. (The already used names can be found by querying its used names
dynamic relation.) This is a public global identity that can be used to refer to
this particular person object in any QuP++ application. A call:

billS:objects@‘zeus.doc.ic.ac.uk’?family_name(N)

from any QuP++ object, anywhere on the internet, will be routed to the object
via the ICM[17] message transport system7.

More usefully, we can give such a public identity to the object servers running
on each internet host. We can do this by launching each object server, in a Qu-
Prolog process with the name objects, with a call:

?-new(object_server,[],server,_).

If we do this on the host zeus.doc.ic.ac.uk, we can remotely launch an object
on this host with a remote call:

server:objects@‘zeus.doc.ic.ac.uk’?newob(person,[...],O).

or, if we want the launched object to have a public name, with a query:

server:objects@‘zeus.doc.ic.ac.uk’?newob(person,[...],billS,O).

As we remarked earlier, such a remote launch requires that the class definition for
person has been loaded on zeus.doc.ic.ac.uk. We could, however, elaborate
the object server so that it keeps track of which class definitions have been
loaded, loading new ones as required. Then all that we need to assume is that
we only use a given object server to create objects for classes to which it has
access to the class definition.

7 This typically requires ICM processes to be running on each host on which we have
a QuP++ process running.

Agents as Multi-threaded Logical Objects 47

Consider now the class definitions:

class mobile_object
clauses {
move_to(Host,O):-
mystate(St),
class(C),
server:objects@Host?newob(C,St,O),
die.

}.

mobile_person isa [person,mobile_object].

The mobile object class is an abstract class. It will have no direct instances
but can be used as a super-class whenever we want some class of objects to be
re-locatable. The mobile person class inherits from this class, and the person
class.

The single method of the mobile object class takes the name of a host
machine, Host and relocates the object by sending a remote newob/3 query to
the publically named object server on that host. Executed by a mobile person
object, the call mystate(St) will bind St to the person state component and
the call class(C) will bind C to mobile person. The last action of the method,
executed if the remote newob call succeeds, is die. This terminates all the threads
executing within the object on the current host.

Suppose O1 is mobile person object initially created by a newob/3 query to
some object server. If we then execute8:

O1?move_to(‘pine.doc.ic.ac.uk’,O2)

then, providing there is an object server running on that host, the object O1
will relocate to become the object with global identity O2. This safely relocates
an object that only has the default interface thread executing at the time it is
relocating and the move to is executed by this thread. If we want to relocate a
multi-threaded object we should program it so that all threads but the interface
thread have terminated, perhaps after recording information about their execu-
tion state in the state of the object, before move to is executed. The object’s
class should then have an init method that will re-launch the additional threads
when the object is re-launched on the new host.

Of course, if we are to have objects moving from object server to object
server, we should augment the object servers so that they can be informed when
an object moves. We should add a new method to the object server class:

moved_to(NewHost):-
caller(O),
self_retract(class_of(O,C)),
(O=N:_@_,atom(N)->self_retract(used_name(N));true).

8 We can also identify the host using its IP number

48 Keith Clark and Peter J. Robinson

and the move to/1 method of a mobile object should be:

move_to(Host,O):-
mystate(St),
class(C),
server:objects@Host?newob(C,St,O),
myid(_:objects@CurrHost),
server:objects@CurrHost^^moved_to(Host),
die.

Notice that the new moved to/2 method of the object server uses caller /1
to find the identity of the local object that is moving, and the move to method
finds the identity of the object server that should be informed of the move by
massaging the term that is its own global identity. It makes the assumption that
all these moving objects are created by newob messages to object servers and
hence have global identities of the form:

Name:objects@CurrHost

This is the case even if the object is not given a public name, Name is then an
atom such as object234.

To many, a mobile agent is a mobile object with a purpose. The purpose
manifests itself in proactive behaviour when the agent object arrives at a new
site. Below is a class definition for a two threaded generic mobile agent object.

class mobile_agent isa mobile_object
state [name,hostlist,script/1,report_to]
clauses {
init:-

hostlist*=[CH|Hosts], % find where I am -- head of hostlist
hostlist:=Hosts, % update hostlist
report_to*=R, % find agent to report to
name*=N, % find my name
myid(Me), % find my current global id
R^^i_am_now(N,Me), % inform report_to agent of new id
object_thread_fork(_,script(CH)). % execute script for CH

% as a separate thread
} private [move_to].

It has a state component which is a list of hosts to visit, and a script of what
to do as it arrives at each host. The script is given by clauses for the dynamic
relation script/1. It has another state component, report to, which is the
global identity of an agent to which it should report, and one called name which
is some name by which it can be recognised. Each time it arrives at a host it
executes the init method. This sends an asynchronous call to the report to
agent object giving its current global identity. This is so that the report to
agent can send remote queries accessing its current state.

Agents as Multi-threaded Logical Objects 49

The init method of this class also calls the script progam passing in the
name of the current host which is assumed to be the first host on hostlist.
The script is executed as a separate object thread so that the main thread of
the object can become the default interface thread responding to remote calls,
in particular calls from the report to agent that will have been informed of its
current identity. It also updates hostlist by removing the current host name.
The called script/1 program will typically end by executing a move to/1 call
on the inherited method of the mobile object class. To implement a mobile
agent we only need to assume that this generic class definition is available on
each host that the agent will visit. The actual script for the mobile agent will
be passed as part of the state component of the agent and will be agent specific.

server:objects@H1?newob(mobile_agent,
[hostlist:=[H1,...,’zeus.doc...’],report_to:=R,
{script(’zeus....’):- % script for home base
make_visible(found_pair/2),
!. % terminate script thread
script(H):- % script for elsewhere
make_visible(found_pair/2),
forall(server:objects@H?

class_of(Mp,married_person),
(Mp?(sex(male),spouse(Sp)),
self_assert(found_pair(Mp,Sp)))),

hostlist*=[H|_],
self^^move_to(H,_).}],_)

The above call creates a mobile agent that moves to each of the list of hosts
[H1,...’zeus.doc...’] reporting to an agent object �R. It is initially created
on H1. In all but the last host ’zeus.doc...’, which is its home base, perhaps
the host on which R resides, it queries all the local married person objects to
create a list of the married person pairs on that host. It finds the identities
of the married person objects by querying the class of relation of the local
object server. The found married person pairs, if any, are cached in a new dy-
namic relation found pair. self assert can be used to add clauses for dynamic
relations that are not declared in the state component of an object’s class. By
default they become additional private dynamic relations of the object and are
automatically collected as part of the state list constructed by mystate/1. So the
clauses for these additional dynamic relations will move with the mobile agent.
Any private dynamic predicate can be made visible if the object executes a call to
make visible/1. This is what our mobile agent script does at each host, allowing
the report to agent to query the found pair/2 relation each time the mobile
agent reports its new identity. Finally note that the last action of the script,
at other than the home host, is an asynchronous call self^^move_to(H,_) to
itself. This is instead of of a direct method call move to(H,). The direct call
would result in the inherited move to method being executed in the script thread,
whereas the asynchronous self call results in its being sent as an asynchronous

50 Keith Clark and Peter J. Robinson

remote call to the interface thread of the mobile agent. Sending it for execution
in the interface thread is cleaner. It means that when it is executed the script
thread on the current host will have terminated because it immediately termi-
nates after sending the self call. It also means that any remote synchronous
call currently being executed by the interface thread, and any such calls that
are pending, will be completed before the move to method is executed by this
thread. (Remember that remote calls are queued and executed by the interface
thread in time order of arrival.)

This is a very simple mobile agent program but the agent, in its ability to
concurrently accept queries about the information it has gathered, whilst it is
gathering new information, is quite sophisticated. Its activity is as depicted in
figure 4. We can use the same program to launch mobile agents with scripts
that find out new hosts to visit, adding the host name to hostnames. We can
also define other mobile agent classes, inheriting from this class, or directly from
mobile object, that allow agents to be recalled or given new scripts on their
journey.

object
server object

server

report_to
agent

newob(mobile_agent,...)

launched
mob. ag.
with two threads

i_am_now(O)

 script
sub-thread

class_of(..)

possibe query accessing
found_pairs relation

married
person obj.

sex(male),
spouse(Sp)

interface
thread
 O

self^^move_to(..)

newob(mobile_agent,...)

object state

Different hosts

Fig. 4. Simple mobile agent

5 Advanced Reasoning Agents

In this section we show how the Qu-Prolog support for quantifiers, substitutions
and object variables can be used to implement powerful reasoning agents that
go beyond Prolog inference.

In order to support the programming of such reasoning agents the Her-
brand Universe (or object-level) of Qu-Prolog extends that of normal Prolog.
Qu-Prolog’s Herbrand universe has quantified terms and object level variables.
Correspondingly the meta-level of Qu-Prolog includes terms to represent the

Agents as Multi-threaded Logical Objects 51

object-level quantified terms and variables. Object variables (or more strictly
object-variable variables) are meta-level variables that range over variables at
the object-level. This means that one object variable may be bound to another
during unification, but cannot be bound to any other kind of term.

Qu-Prolog also supports a notation for substitution application. Such a meta-
level term represents the application of a substitution to a term at the object-
level with change of bound variables as required.

Unification in up to alpha-equivalence. In other words, the unification algo-
rithm attempts to find instantiations of variables that make two terms equal up
to change of bound variables. We present some example unification problems
shortly to illustrate the unification of quantified terms.

Note that, in Qu-Prolog, there is a distinction between substituition and
instantiation. When talking about substitution we mean variable substitution
at the object-level and consequently change of bound variables is required when
‘pushing’ a substitution into a quantified term (at the object-level). On the other
hand, instantiation (often called substitution when discussing standard Prolog)
is really substitution at the meta-level. Instantiations therefore ‘move through’
terms representing object-level quantified terms without requiring change of
bound variables.

Object variables use the same syntax as Prolog atoms but are distinguished
from atoms by declaration. The declaration

?- obvar_prefix([x,y]).

declares x and y, as well as x and y followed by numbers or underscores and
numbers, as object variables. So, for example, x0, y_1 are also object variables.

Quantifier symbols are declared using the same method as declaring opera-
tors. So, for example,

?- op(500, quant, q).

declares q to be a quantifier symbol with precedence 500. Note, however, that
this declaration does not give any semantics to the quantifer symbols (other than
as an object variable binder) – the semantics are defined by the predicates of
the program.

Assuming the declarations above, the following interaction with the inter-
preter shows Qu-Prolog unification in action.

| ?- x = y.
x = y
y = y

| ?- x = a.
no

| ?- q x f(x) = q y f(y).
x = x
y = y

52 Keith Clark and Peter J. Robinson

| ?- q x A = q y B.
x = x
A = [x/y]B
y = y
B = B
provided:
x not_free_in [$/y]B

| ?- [A/x]B = 3.
A = A
x = x
B = B
provided:
[A/x]B = 3

The first example shows that object variables can be unified with each other.
The second example shows that object variables don’t unify with other terms.
The third example shows that unification of quantified terms is up to alpha-
equivalence – neither x nor y is instantiated by the unification.

The forth example extends the third example – to make the two terms alpha
equivalent all free occurrences of y in B are replaced by x. The notation [x/y]B is
the application of a substitution to B with this property. Note that, without more
information about B, the substitution cannot be evaluated. Also note that the
unification adds the constraint x not_free_in [$/y]B (where $ is an atom).
This constraint is also required in order to make the terms alpha-equivalent.
If x and y represent different object variables then the constraint reduces to
x not_free_in B – which says that since the left hand side of the unification
has no free x’s then neither can the right hand side. On the other hand if x and y
represent the same object variable then the constraint becomes true since there
are no free x’s in [$/x]B. Also, in this case there are no free x’s on either side
of the unification.

The final example shows a unification problem that delays, that is, becomes
a constraint. This is because the unification problem has two solutions: B = 3
and B = x, A = 3. Unification problems that have more than one solution or
problems for which it is hard to prove there is only one solution, delay in the hope
that some future computation will simplify the problem. The Qu-Prolog release
comes with an example program, incomplete_retry_delays that attempts to
find solutions to delayed unification problems. This program is used in the Ergo
prover to eliminate such delays on request and is used in our example below to
eliminate any remaining delayed unification problems.

Let us now look at the implementation in QuP++ of a reasoning agent whose
inference engine is a tableau style prover for full first order predicate logic. The
inference engine is given a list of sentences in first order logic and tries to find
a contradiction – in other words it tries to show the collection of sentences is
unsatisfiable. The inference engine is supplied with a resource bound that limits
the number of inference steps.

Agents as Multi-threaded Logical Objects 53

We begin with a discussion of the inconsistency checker class (the inference
engine) and later look at the reasoning agent class.

The inconsistency checker and the reasoning agent and its clients need to
represent logical formulae as Qu-Prolog terms and this is aided with the following
declarations.

?- obvar_prefix([x,y]).
?- op(860, quant, all). % The universal quantifier
?- op(860, quant, ex). % The existential quantifier
?- op(810, fx, ~). % negation
?- op(820, xfy, and). % conjunction
?- op(830, xfy, or). % disjunction
?- op(840, xfy, =>). % implication
?- op(850, xfy, <=>). % equivalence

Following the declarations, the Qu-Prolog parser will then recognize the terms
below (for example).

all x p(x)
[A/x]B
all x_1 ex x_2 (p(x_1) => q(x_2))

The first term represents the quantified term whose quantifier symbol is all,
whose bound variable is x and whose body is p(x). The seond term represents
a substitution application where all free x’s in B are to be replaced by A.

The header for the inconsistency checker class is given below. The state
variable simplifier is the address of a simplifier agent that the inconsistency
checker uses to simplify the formulae.

class inconsistency_checker
state [simplifier]
inconsistent(Fs,R,RR):-

find_contradiction(Fs,R,RR,not_simplified_yet).

% ... clauses for find_contradiction/4 and make_instances/5
} private [find_contradiction/4,make_instances/5]

In the only public method of this class, inconsistent(Fs,R,RR), Fs is a list of
formulae and R is a resource bound – the maximum number of inference steps
allowed in trying to reduce Fs to an obviously inconsistent list of formulae. RR
is the remaining sumber of inference steps after an inconsistency is found. The
state variable simplifier holds the identity of a simplifier agent that can be
used, at most once, to do auxilary simplification reductions.

find_contradiction(_,0,_,_):- !,fail. % resource bound exceeded
find_contradiction(Fs,R,RR,STag) :-

member(~true, Fs),!,
RR is R-1.

54 Keith Clark and Peter J. Robinson

find_contradiction(Fs,R,RR,STag) :-
member(~(X=X), Fs),
incomplete_retry_delays,
!,
RR is R-1.

find_contradiction(Fs,R,RR,STag) :-
member(X, Fs),
member(~X, Fs),
incomplete_retry_delays,
!,
RR is R-1.

find_contradiction(Fs,R,RR,STag) :- % Split conjunct.
member_and_rest(A and B, Fs, Rst),
!,
NR is R-1,
find_contradiction([A,B|Rst],NR,RR,STag).

find_contradiction(Fs,R,RR,STag) :- % Remove an ex quantifier.
member_and_rest(ex x A, Fs, Rst),
x not_free_in Rst,
!,
NR is R-1,
find_contradiction([A|Rst],NR,RR,STag).

find_contradiction(Fs,R,RR,STag) :- % Branch on disjunct.
member_and_rest(A or B, Fs, Rst),
!,
NR is R-1,
find_contradiction([A|R],NR,IRR,STag),
find_contradiction([B|R],IRR,RR,STag).

find_contradiction(Fs,R,RR,STag) :- % Branch on implication.
member_and_rest(A => B, Fs, Rst),
!,
NR is R-1,
find_contradiction([~A|R],NR,IRR,STag),
find_contradiction([B|R],IRR,RR,STag).

find_contradiction(Fs,R,RR,STag) :- % Do univ. instantiations.
make_instances(Fs, Fs, NewFs, R, NR),
NR < R, % made at least one univ. instantiation
!,
find_contradiction(NewFs,NR,RR,STag).

% Call the simplifier - only if not been called before.
find_contradiction(Fs,R,RR,not_simplified_yet) :-

NR is R-1,
simplifier*=S,
S?simplify(Fs,SFs), % remote call to simplifier agent
find_contradiction(SFs,NR,RR,simplified).

Agents as Multi-threaded Logical Objects 55

% Make instances of all universal and
% negated existential formulae.
make_instances([], New, New, R, R).
make_instances([H|T], Fs, NewFs, R, NR) :-

(H = all x A
->
IFs = [[_/x]A|Fs],
IR is R - 1

;
H = ~ex x A
->
IFs = [~[_/x]A|Fs],
IR is R - 1

;
IFs = Fs,
IR = R

),
make_instances(T, IFs, NewFs, IR, NR).

The private method find_contradiction/4 attempts to reduce its Fs argu-
ment to a contradictary list and succeeds if it can do this within the resource
bound of R steps. The last argument is a symbol flag that switches to simplified
when the simplifier agent has been used in a particular inference, preventing
another use. The third argument will return the final resource count when a con-
tradiction is found. It is not of interest for a top level call, but it must be used
when an inference splits into two sub-proofs to ensure that the second sub-proof
uses only the resource left after the first sub-proof succeeds.

The first clause for find_contradictition/4 causes the call to fail when the
resource bound has been reduced to 0. The next three clauses deal with direct
contradictions in its list of formulae first argument. The remainder deal with the
logical operators and simplification. We only give representitive examples of this
last group of clauses. The predicate member_and_rest(E,L,R) succeeds if E is
somewhere on L and R is L with E removed.

The sixth clause eliminates existential quantifiers. The call to the built-in
predicate not_free_in/2 constrains x to be not-free-in R as required.

The universal instantiation rule makes an instance of each universal and
negated existential formula and adds this to the list of formulae. For example,
the formula all x A is instantiated to A with all free x’s in A replaced by a new
meta-variable representing a yet-to-be-determined instance and this is added as
a new formula. Since the universally quantified formulae remain, the rule can
be re-applied any number of times providing there is at least one new formula
added by its application. Repeated application of the rule to the same formulae
is needed because sometimes a proof requires several different instantiations of a
universally quantified formula. After each application we can expect that earlier
rules will apply to the augmented list of formulae and these will be exhaustively

56 Keith Clark and Peter J. Robinson

applied before it is re-used. The earlier rules always remove the formula to which
they apply.

The universal instantiation rule is made to fail if no universal instantiation
is found by the call to the auxiliary predicate make_instances/5 to prevent
repeated, pointless application to lists of formulae which contain no universally
quantified formulae. In this case, when the universal instantiation rule is first
called and fails, only the simplification rule can be used, as a last resort. After
this has been used once, when all the earlier rules have been exhaustively applied
and the universal instantiation rule is recalled and again fails, the entire proof
fails.

The last clause sends a message to a simplifier agent that attempts to simplify
the formula list according to its own simplification rules. The prover agent waits
until the simplifier returns a simplified list. This clause demonstrates how one
reasoning agent can take advantage of the skills of other reasoning agents in
solving its problems. The simplifier might, for example, be a rewrite system for
arithmetic subexpressions.

We now give an example of the inference engine in action by showing the
sequence of transformations that find_contradictition would generate given
a list of formulae.

(initial list)
[~ex x r(x), p(a) or ex x1 q(x1), all y1 ~q(y1),

all z1 p(z1) => r(z1)]

(or rule on: p(a) or ..)
[~ex x r(x), p(a), all y1 ~q(y1), all z1 p(z1) => r(z1)],

[~ex x r(x), ex x1 q(x1), all y1 ~q(y1), all z1 p(z1) => r(z1)]

(univ. instant. rule on: ~ ex x .., all y1 .., all z1 ..
of first list)

[~r(X1), p(a), ~q(Y1), p(Z1) => r(Z1), ~ex x r(x),
all y1 ~q(y1), all z1 p(z1) => r(z1)],

[~ex x r(x), ex x1 q(x1), all y1 ~q(y1), all z1 p(z1) => r(z1)]

(implies rule on: p(Z1)=>r(Z1) of first list)
[~r(X1), p(a), ~q(Y1), ~p(Z1), ...],

[~r(X1), ~q(Y1), r(Z1), ...],

[~ex x r(x), ex x1 q(x1), all y1 ~q(y1), all z1 p(z1) => r(z1)]

(contradiction rule appied to: p(a),~p(Z1) of first list
and to: ~r(X1),r(Z1) of second list)

[~ex x r(x), ex x1 q(x1), all y1 ~q(y1), all z1 p(z1) => r(z1)]

Agents as Multi-threaded Logical Objects 57

(ex rule applied to: ex x1 q(x1))
[~ex x r(x), q(x2), all y1 ~q(y1), all z1 p(z1) => r(z1)]

(univ. instant. rule applied to:
~ex x r(x), all y1 ~q(y1), all z1 p(z1) => r(z1))

[~r(X2), ~q(Y2), p(Z2) => r(Z2), ~ex x r(x), q(x2), ...]

(contradiction rule applied to: ~q(Y2),q(x2))
success

When the ex rule is applied the new object variable (which comes from the
rule instance) is set to be not free in all the other formulae in the list.

Note that we can use find_contradiction to attempt answer extraction
during the proof. If, for example, we have the formula ~r(X), instead of the
formula ~ex x r(x) in the list of formulas at the start of the above contradiction
derivation, a contradiction will also be found generating the binding X=a. In fact,
if the formulae in the knowledge base are essentially horn clauses and the ‘query’
formula is of the right form then find_contradiction behaves as a Prolog goal
evaluator.

However, answer extraction is not always possible. If we take ~ex y r(y) as
the query formula and if the knowledge base consists of the formula ex x r(x) or
the formula r(a) or r(b) then find_contradiction will succeed. If, however,
the query formula is ~r(X) then a contradiction cannot be found. In the first case,
the use of the rule for existential quantification causes a not-free-in condition to
be generated that prevents X from being instantiated to x. In the second case,
two different instantiations are required during the proof.

We now turn our attention to an example of a reasoning agent class. This is
the class definition for a reasoning agent. Each reasoning agent object contains
a knowledge base of believes facts that can be initialised when the agent is
created and added to whilst it is alive. Clients of the reasoning agent can use the
ask method to see if the agent believes the supplied formula. The agent believes
the formula if it is in the knowledge base or can be deduced from the knowledge
base within the supplied inference step resource bound.

class reasoner isa inconsistency_checker
state [believes/1, told/1, mentor/1]
clauses{
init :- object_thread_fork(_,absorb_told_info).

absorb_told_info:-
thread_wait_on_goal(self_retract(told(F)),
findall(S, believes(S), Fs),
(inconsistent([F|Fs],200,_) ->

true
;

58 Keith Clark and Peter J. Robinson

self_assert(believes(F))
),
absorb_told_info.

tell(B) :-
caller(M),
mentor(M),
self_assertz(told(B)).

ask(F,_) :-
believes(F),
!,
caller(Cl),
Cl^^proved(F).

ask(F,R):-
nonvar(F),
integer(R),
R>0,
caller(Cl),
object_thread_fork(_,try_to_prove(F, R, Cl)).

try_to_prove(F, R, Cl) :-
findall(S, believes(S), Fs),
(inconsistent([~F|Fs],R,RR) ->

Cl^^proved(F,RR)
;
Cl^^not_proved(F,RR)

).
}
private [try_to_prove/2, absorb_told_info/0, inconsistent/2,

told/1].

As an example use of this program, suppose we execute:

new(reasoner,[{believes(p(a) or ex x1 q(x1)). ..},..],Ag)

where the agent is given the formulas:

p(a) or ex x1 q(x1), all y1 ~q(y1), all z1 p(z1) => r(z1)

as its initial beliefs. If some other agent Cl then sends the query:

Ag^^ask(r(X),100)

Ag will spawn a contradiction sub-proof trying to reduce:

[~r(X), p(a) or ex x1 q(x1), all y1 ~q(y1),
all z1 p(z1) => r(z1)]

to a contradiction. Since this will succeed, the reply:

Cl^^proved(r(a))

will be sent to the client agent.

Agents as Multi-threaded Logical Objects 59

The mentor/1 dynamic predicate is used to tell the agent which other agents
are allowed to give it new information by calling its tell method. Notice that
the method does not immediately add a believes/1 fact. Instead a told/1 fact
is asserted and it is the responsibility of the absorb_told_info ‘daemon’, that
runs as a separate thread launched by the init method, to check if the told
sentence F is inconsistent with the sentences already in the knowledge base. If it
can prove inconsistency within a resource limit of 200 inference steps then the
told sentence is ignored. Otherwise the told sentence is added to the knowledge
base. This is potentially dangerous since it could produce a knowledge base with
‘deep’ contradictions, but it is pragmatic. That the agent will not accept tell/1
calls except from its mentors is another safeguard.

The meta-call predicate thread_wait_on_goal, used in the reasoner class
definition, causes the thread to suspend until the goal which is its argument
succeeds. That is, the argument goal is tried. If it succeeds, the meta-call succeeds
and no further solutions of the argument goal are sought on back-tracking. If
it fails, the thread executing the meta-call suspends until there is some update
to the dynamic clause data base, or the record date base. The argument call
is then retried. This try, fail, retry, continues indefinitely until the argument
goal succeeds. In this case it will cause the absorb_told_info object thread to
suspend until some told(F) fact is asserted by the interface thread. The thread
deletes the asserted fact and asserts a believes(F) fact if F cannot be shown to
be inconsistent with the agent’s current beliefs within 200 inference steps. If it
can be shown to be inconsistent with the current beliefs no belief fact is asserted.
The absorb_told_info thread then recurses to handle the next asserted told/1
fact.

This is one simple example of a reasoning agent. Another possibility is to
define a cooperative reasoning agent that can be used to implement a distributed
knowledge base. The system would contain a collection of agents, each with their
own local knowledge base, that would cooperate to produce proofs based on the
combined knowledge of the group. Each agent could have meta knowledge about
which other agents ‘know about’ particular predicates and hence can be asked to
prove or disprove predications (or their negations) containing these predicates.

To achieve this we can define a sub-class coop_reasoner of the reasoner
class. This is given below.

It has an extra dynamic predicate:

has_proved_false(L,Ag,RR)

which is used by the agent to record answers to isfalse/2 queries it has sent
out to other agents. It also has extra methods for accepting asynchronous calls
isfalse(L,R), that cause the agent to try to contradict L within R inference
steps, and for accepting asynchronous proved_false(L,RR) replies to such calls
that it has sent to other agents. Here RR is the number of inference steps left
from the resource R given in the isfalse/2 request.

The three new clauses for find_contradiction/4 add a new way for ter-
minating a contradiction proof. When a literal L is found in the current list of

60 Keith Clark and Peter J. Robinson

formulas with a predicate P, and the agent believes that some other agent Ag
knows about P, providing the complement literal to L is not in the currentl list,
Ag is sent an asynchronous isfalse(L,RforAg) call. The proof then continues
with asked(L,A) replacing L in the list of formulas. (For this reason we need
the second new clause for find_contradiction/4 that terminates a proof when
a literal is found for which there is an asked/2 formula mentioning its comple-
ment.) RforAg is a number of inference steps that Ag should use in trying to
contradict L. It is got by dividing up the remaining inference steps in a manner
dependent upon L. We leave this undefined. A suitable default definition would
just halve the remaining inference steps, no matter what L is. Notice that when a
sub-contracted proof is achieved inside the given resource bound, signalled by the
eventual self asserting of a has_proved_false(Ag,L,RR) dynamic clause by the
concurrently executing interface thread as a result of a proved_false(L,RR)
call, the unused inference steps RR of the sub-contracted proof are added to the
still unused inference steps of the main proof to give a more accurate value for
the unused the inference steps of the main proof.

The agent’s interface thread will concurrently be responding to queries from
other agents, including any proved false(L) reply sent back from Ag. The in-
terface thread will respond to this by self asserting a has proved false(L,Ag).
These dynamic facts are handled by the second new clause. This second clause
looks for asked(L,Ag) reminders left in the current list of formulas. For each
such reminder it checks to see if has proved false(L,Ag) holds, i.e. if such a
fact has been asserted by the concurrently executing interface thread. If any such
replies have been received to the sub-contracted proofs, the main contradiction
proof immediately terminates.

class coop_reasoner isa reasoner
state [has_proved_false/3]
clauses {
find_contradiction(Fs,R,RR,STag) :-

member_and_rest(L, Fs, Rst),
literal(L),
predicate_of(L,P), % perhaps should sub-contract L
believes(knows_about(P,Ag)), % to Ag but should not if
complement(L,CompL), % Fs contains complement of L
\+ member(CompL,Rst), % or a note that Ag has been
\+ member(asked(CompL,Ag)), % asked about its complement
divide_up(L,R,RforAg,NR),
!,
isfalse(L,RforAg)^^Ag,
find_contradiction([asked(L,Ag)|Rst],NR,RR,STag).

find_contradiction(Fs,R,RR,STag) :-
member(L, Fs),
literal(L),
complement(L,CompL), % find complement to L
member(asked(CompL,_), Fs), % equiv. to having CompL

Agents as Multi-threaded Logical Objects 61

incomplete_retry_delays,
!,
RR is R-1.

find_contradiction(Fs,R,CRR,STag) :-
member_and_rest(asked(L,A),R),
has_proved_false(L,A,RR), % reply has come from A about L
incomplete_retry_delays,
CRR is R + RR,
!.

find_contradiction(Fs,R,RR,STag):-
super?find_contradiction(Fs,R,RR,STag).

proved_false(L,RR):-
caller(Ag),
self_assert(has_proved_false(L,Ag,RR).

isfalse(L,R):-
caller(Ag),
findall(S,believes(S),Fs),
object_thread_fork(_,try_to_contradict(L, R, Ag)).

try_to_contradict(F, R, Ag) :-
findall(S, believes(S), Fs),
inconsistent([F|Fs],R) -> proved_false(L)^^Ag ; true.

} private [has_proved_false].

6 Related Work

With repect to its OO features the design of QuP++ has been much influenced by
L&O [16] and DK-Parlog++ [9]. L&O is an OO extension for a single threaded
Prolog and the objects are not active. However, QuP++ borrows its inheritance
semantics from L&O. DK-Parlog++ is an OO extension of a distributed hy-
brid of Parlog[6] and the multi-threaded IC-Prolog II[10]. DK-Parlog++ classes
have both procedural methods (Parlog clauses) and knowledge methods (Pro-
log clauses). Object state, as in QuP++, is represented by both state variables
and dynamic clauses. QuP++ methods are the equivalent of the DK-Parlog++
knowledge methods. However, DK-Parlog++ has only single inheritance and
does not have built in support for multi-threaded objects where all the threads
can access and update the object’s state with atomic operations. It is also re-
stricted to a local area network, whereas QuP++ objects can be distributed over
the internet.

DLP [11] is perhaps the closest distributed OO LP language to QuP++. DLP
has classes with multi-inheritance and class instances run as separate threads.
Object state can only be recorded as state variables, not as clauses. Method
invocation is a remote synchronous call. The default is that such a call spawns

62 Keith Clark and Peter J. Robinson

a query sub-thread in the target object. This is similar to the O??Q remote call
of QuP++ that we have not discussed in this paper. For a query O??Q the dif-
ferent solutions are returned by O to the caller Cl, one at a time, as required
by backtracking within Cl. This is distributed backtracking and its QuP++ im-
plementation is sketched in [7]. For a O?Q call all its solutions are returned to
Cl in a list with local backtracking within Cl. DLP does not have the equiva-
lent of the ? and ^^ remote calls. In addition, it appears objects can only be
single threaded. An object can have the equivalent of an init method but this
cannot spawn sub-threads, it can only spawn new objects that have a separate
state. Because of this the DLP init method must periodically expiclitly inter-
rupt its pro-active execution to accept remote calls. One cannot have QuP++

style multi-threaded objects, with one thread accepting remote calls whilst the
other threads concurrently engage in their own specific activities interacting, if
need be via the shared object state. In addition, neither DLP and DK-Parlog++
have reflective methods such as class/1 and mystate/1 and consequently do
not allow easy programming of mobile agents. Both are also OO extensions of
normal Prolog, with no special support for writing inference systems.

CIAO Prolog is a rich Prolog systems that also has multi-threading[4], with
inter-thread communication via atomic updates of the dynamic data base, and a
module system which has been used to implement an OO extenssion O’CIAO[5].
O’CIAO supports multiple inheritance between classes with class methods being
static clauses and object state being represented as dynamic clauses. Dynamic
clauses for the different object instances are distinguished in the same way as in
QuP++ by adding the object identity as an extra argument to the predicate they
define. The objects of O’CIAO are passive objects, the instances do not run as
separate threads, however CIAO itself has active modules which can also have
state, repesented as dynamic clauses local to the module. These active modules
can be given global identities that can be stored in files and client modules
can make use of the active module by referencing this file and declaring which
predicates it is using from amongst those that are exported by the module.
These exported predicates are then called in the normal way within the client
module, but the implementation will do a remote call to the active module. The
concept of an active module/class could be added to O’CIAO to give it active
objects. Also, the multi-threading of CIAO could be used to allow multi-threaded
objects sharing the same dynamic clause object state, but this integration of all
the features of CIAO has apparently not yet been done. CIAO Prolog also has
constraint handling but has no built in support for programming non-clausal
theorem provers.

Mozart-Oz[19] is a multi-paradigm distributed symbolic programming lan-
guage with support for logic programming, functional programming and con-
straint handling. It is being used for distributed agent applications[22]. It also
has passive objects, essentially records of functions which can access and update
state local to the record. Mozart-Oz is multi-threaded with the threads shar-
ing a common store of values and constraints. The store is used for inter-thread
communication. Constraints are posted to the store and the store can be queried

Agents as Multi-threaded Logical Objects 63

as to whether some particular constraint is entailed by the current constraint
store. A thread executing such a query will suspend until the store entails the
constraint. This is a generalisation of our use of thread_wait_on_goal/1 in
QuP++.

In Mozart-Oz any data value, including on object or an unbound variable
of the constraint store, can be shared across different Mozart-Oz processes by
creating a ticket for the data value using a special primitive. The ticket is an
ASCII string and is similar to the global identity of an active object in QuP++,
which is a term constructed from three symbols. This ticket string can then
be used in another Mozart-Oz process to access the value associated with the
ticket, even if it is held in a non-local store, by calling another ticket value access
primitive.

Active objects can be programmed by using a Mozart-Oz port which can be
sent a message from any thread that has access to the port, perhaps via a ticket.
A port is rather like an object’s message queue in QuP++. Another thread then
accesses the messages sent to the port as elements of an incrementally generated
list, calling an appropriate method of some local passive object for each accessed
message. Such a port/thread/object combination behaves very like a QuP++

active object, but the calling of the object’s methods and the sending of replies
has to be achieved in Mozart-Oz using explict asynchronous message sends to
ports and explicit accesses of messages from the port message streams. That is,
what we have referred to as the interface thread has to be explictly programmed
as a wrapper for an object to make it active. This is how the remote calls of
QuP++ are implemented, using the inter-thread communication primitives of
Qu-Prolog[7], but QuP++ presents to a programmer the higher level abstraction
of synchronous and asynchronous remote calls directly to an object’s methods.

Gaea[20] is a multi-threaded OO Prolog system with active objects which
have dynamic methods and modifiable inheritance trees. Gaea is not a class
based OO system. Instead each active object, which in Gaea is just a thread
with an associated cell of clauses, executes in an environment of a list of parent
cells for its cell. These parent cells have the role of super-classes, but the list of
parent cells can be dynmically constructed as the object is created. Each of
these parent cells can itself have an associated list of parent cells. So an object
executes in an tree structured environment of ancestor cells rooted at its cell.
This is similar to a QuP++ object executing in tree structured environment of
the static methods of its super classes (the parent hierarchy of Gaea cells) with
its own state component of dynamic clauses and state variables (the root cell
directly linked with the Gaea object/thread). The difference is that in Gaea, the
inheritance structure is created dynamically, as the active object is forked, and
it can be modified whilst the object is executing. Any parent cell of a cell can be
removed and new ones can be added. So the entire inheritance hierarchy for an
object is dynamic. These modifications to the inheritance structure can be made
by the object itself, or by another object executing in the same Gaea process.

Cells can contain cell variables as well as clauses. The cell variables are similar
to the state variables of a QuP++ object. The cell clauses can be updated using

64 Keith Clark and Peter J. Robinson

special cell assert and retract primitives, similar to the self assert and retract
of QuP++, as can the cell variables. Objects communicate via the clauses and
cell variables of the cells they both have access to. In addition, a call can be
evaluated relative to a named cell. When this is the root cell linked with an
object, this is equivalent to a call to the methods of that object, even though the
call is executed in the caller, rather than the callee. Clearly this is only possible
when the different objects execute in the same Gaea process, for only then will
each have access to the cell clauses of the other objects. Gaea is not a distributed
system.

The ability to modify the inheritance structure of an object is a much more
dymamic way of changing an object’s behaviour than the become/2 primitive of
QuP++. However, the flexibility may come at a cost of program transparency.
Gaea has no special support for writing theorem provers.

λProlog, see for example [2], is a logic programming language with built-in
support for λ-terms and consequently can be used as an implementation language
for theorem provers in much the same way as is done in Qu-Prolog. λProlog
does not, however, appear to provide as much support as Qu-Prolog does for
implementing interactive theorem provers, nor does it appear to have support
for multiple threads or even high-level communication bewteen different λProlog
processes.

In this paper we have shown how simple multi-threaded agents can readily be
implemented in QuP++. Since our main concern was illustrating the features of
the language we have not developed any complex agent architectures. However,
it would be no great effort to implement logic based agent architectures such
as those described in [3], [21], [23]. Implementing more complex architectures,
with both sophisticated reasoning and reactive capabilities, is the subject of our
on-going research.

Bob Kowalski wrote a short paper in 1985 [13] which anticipated many of
the ideas now being discussed with respect to logic based agents. In particular,
the paper discusses the need for information assimilation by resource bounded
reasoning agents, interacting with one another and the world. Our co-operative
reasoning agents are a partial realisation of the ideas expressed in that paper. His
ideas have since been elaborated in [14] and [15] to allow interleaving of action
and reasoning within an agent, in order to reconcile the need for rationality and
reactivity. The agent architectures sketched in these more recent papers could
also easily be implemented in QuP++.

References

1. Holger Becht, Anthony Bloesch, Ray Nickson and Mark Utting, Ergo 4.1 Refer-
ence Manual, Technical Report No. 96-31, Software Verification Research Centre,
Department of Computer Science, University of Queensland, 1996.

2. C. Belleannée, P. Brisset, O. Ridoux, A pragmatic reconstruction of λProlog, Jour-
nal of Logic Programming, 41(1), 1999, pp 67-102

Agents as Multi-threaded Logical Objects 65

3. M. Bozzano, G. Delzanno, M. Mattelli, V. Mascardi, F. Zini, Logic Programming
and Multi-Agent Systems: A synergic combination for applications and semantics, in
The Logic Programming Paradigm, (eds K. Apt et al), Springer-Verlag, 1999.

4. M. Carro and M. Hermenegildo, Concurrency in Prolog Using Threads and a Shared
Database. Proceedings of ICLP99, (ed. D. De Schreye), MIT Press, 1999, pp 320-334.

5. A. Pineda and M. Hermenegildo, O’Ciao: An Object Oriented Programming
Model for (CIAO) Prolog, Research Report CLIP 5/99.0, (accessible from
http://www.clip.dia.fi.upm.es/), Facultad de Informatica, UPM, Madrid, 1999.

6. K. L. Clark, S. Gregory, Parlog: Parallel Programming in Logic, ACM Toplas 8(1),
1-49 pp, 1986.

7. Keith Clark, Peter Robinson and Richard Hagen. Multi-threading and Message
Communication in Qu-Prolog Theory and Practice of Logic Programming, 1(3),
2001, pp 283-301.

8. Keith Clark, Peter J. Robinson and Richard Hagen, Programming Internet Based
DAI Applications in Qu-Prolog, Multi-agent systems, (eds. C. Zhang, D. Lukose),
Springer-Verlag, LNAI 1544, 1998.

9. K.L. Clark, T.I. Wang, Distributed Object Oriented Logic Programming, Pro-
ceedings of FGCS94 Workshop on Co-operating Heterogeneous Information Systems,
Tokyo, 1994.

10. D. Chu, K. L. Clark, IC-Prolog II: A multi-threaded Prolog system Proceedings of
ICLP93 Post Conf. Workshop on Concurrent, Distributed and Parallel implementa-
tions of Logic Programming Systems, 1993

11. A. Eliens, DLP, A language for distributed logic programming Wiley, 1992
12. Richard Hagen and Peter J. Robinson. Qu-Prolog 4.3 User Guide. Technical
Report No. 97-12, Software Verification Research Centre, University of Queensland,
1999.

13. R. A. Kowalski, Logic Based Open Systems, Representation and Reasoning, Jakob
ph. Hoepelmann (Hg.) Max Niemeyer Verlag, Tubingen, 1985, pp125-134.

14. R. Kowalski and F. Sadri, Towards a unified agent architecture that combines
rationality with reactivity, Proc. International Workshop on Logic in Databases,
Springer-Verlag, LNCS 1154, 1996.

15. R. A. Kowalski and F. Sadri, From Logic Programming to Multi-Agent Systems,
Annals of Mathematics and Artificial Intelligence 25, 1999, pp391-419.

16. F.G. McCabe, Logic and Objects Prentice-Hall, 1992.
17. F.G. McCabe, The Inter-Agent Communication Model (ICM),
http://www.nar.fla.com/icm/, Fujitsu Laboratories of America Inc, 2000.

18. F. G. McCabe and K. L. Clark. April:Agent Process Interaction Language. Intel-
ligent Agents, (ed. N. Jennings, M. Wooldridge), Springer-Verlag LNCS 890, 1995.

19. Mozart-Oz Homepage: www.mozart-oz.org
20. I. Noda, H. Nakashima, K. Handa, Programming language GAEA and its appli-
cation for multi-agent systems, Proc. of Workshop on Multi-agent systems and Logic
programming, In conjunction with ICLP’99, 1999.

21. A. Roa, AgentSpeak(L): BDI Agents speak out in a logical computable language,
Agents Breaking Away, (eds. W. van de Velde and J. W. Perram), Springer-Verlag
LNCS 1038, 1996.

22. Peter Van Roy and Seif Haridi, Mozart: A Programming System for Agent Appli-
cations, International Workshop on Distributed and Internet Programming with Logic
and Constraint Languages, 1999. Accessible from http://www.mozart-oz.org/papers/

23. G. Wagner, Artificial Agents and Logic Programming, in Proc. of ICLP’97 Post
Conference Workshop on Logic Programming and Multi-Agent Systems, 1997.

	Introduction
	Overview of QuP$^{++}$
	QuP$^{++}$ by Example
	Object Servers and Mobile Agent Objects
	Advanced Reasoning Agents
	Related Work

