
MASSPA-Modeller: A Spatial Stochastic
Process Algebra modelling tool

Marcel C. Guenther Jeremy T. Bradley

Imperial College London, 180 Queen’s Gate,
London SW7 2AZ, United Kingdom,

Email: {mcg05,jb}@doc.ic.ac.uk

Abstract. We introduce MASSPA–Modeller, a visual modelling tool for
the recently developed spatial stochastic process algebra MASSPA which
describes Markovian Agent Models (MAM)s. The major advantage of us-
ing a visual editor to generate MASSPA models is that the laborious task
of modelling the communication between agents is partially automated
by the tool. Furthermore the tool can separately check the correctness of
local and spatial aspects of the model and thereby help users to find mis-
takes. For the analysis of the resulting models MASSPA–Modeller uses
the powerful GPA–analyser engine. Additionally we briefly summarise
the latest developments in spatial stochastic process algebras.

Keywords: Performance Analysis, Higher Moment Analysis, Spatial
Stochastic Process Algebra, Spatial Modelling, MAM, MASSPA

1 Introduction

Performance analysis studies modelling techniques for predicting performance of
computer and telecommunication systems. Moreover, it is also applied in other
areas such as crowd modelling, systems biology and various other fields. Com-
mon analysis targets are the average time to complete a job or the probability
distribution of client service times. Most models are described in high-level lan-
guages such as PEPA[1], a Stochastic Process Algebra (SPA), which translate
to Continuous Time Markov Chains (CTMC)s. Alternatively Stochastic Petri
nets can be used to describe CTMCs, but in this paper we will focus on process
algebras. All CTMC models assume that any delay between two events in the
underlying stochastic process is exponentially distributed.

Recent developments in fluid analysis methods [2,3] for CTMCs derived from
high-level model descriptions such as SPAs have given modellers means to anal-
yse extremely large models. Previously such models could only be analysed us-
ing stochastic simulation [4], as traditional analysis techniques, which are based
on linear equation solvers, can only solve small models due to the well-known
state space explosion problem. Fluid techniques exploit the fact that moments



of stochastic processes, which describe state populations in lumped CTMCs, can
be approximated by Ordinary Differential Equations (ODE)s. Today, there is a
large number of formalisms for which the mapping from the high-level model
description to ODEs has been defined, e.g. GPEPA [3], SCCP [5] and stochastic
π-calculus [6]. More recent research has shown that it is even possible to ap-
proximate measures such as passage time distributions and reward vectors using
ODEs [7,8].

Spatial modelling languages are useful extensions to their non-spatial counter-
parts, for instance when investigating crowd movements, disaster propagation or
network topologies. Evaluation techniques for spatial models are similar to those
for non-spatial models, however, spatial models tend to have larger CTMCs and
allow analysis techniques that take into account the spatial nature of the model.
Fluid analysis techniques have been applied to CTMCs that arise from spatial
models described in Bio-PEPA [9] and the MAM formalism [10] for which we
defined MASSPA, a Markovian Agent Spatial Stochastic Process Algebra [11].
The MAM formalism is a particularly interesting spatial modelling framework
as it has been applied in a large number of different areas such as wireless sen-
sor networks [10], fire propagation [12] and traffic modelling [13] to name but a
few. Research in [11] shows that there is a generic mapping from MASSPA to a
mass-action type reaction system. As a consequence any MAM model expressed
in MASSPA grammar can now be analysed using the powerful GPA–analyser,
which was originally developed for the analysis of massive GPEPA models [14].

Despite the existence of spatial SPAs (SSPA)s, complex spatial models can still
be too large to be expressed in SSPAs by hand. To facilitate the creation of
spatial models, visual editors such as DrawNet [15] and SeSam [16] have been
developed for stochastic Petri nets and agent based simulations. Moreover, a re-
cent extension to DrawNet enables users to describe the spatial aspects of MAMs,
but it currently does not allow users to define sequential Markovian Agents [17].
MASSPA–Modeller, which is described in this paper, is the first spatial mod-
elling tool for MAMs that allows users to define all aspects of MA models. It
further enables users to perform higher moment and continuous reward vector
analysis on spatial models. Moreover, it is the first hybrid tool that allows users
to express local agent behaviour using SPA and spatial behaviour in a visual
editor. This paper is organised as follows. First, we briefly describe the MAM
formalism and MASSPA in Sect. 2. We then demonstrate the MASSPA-Modeller
work-flow in Sect. 3 and finally present conclusions in Sect. 4.

2 MAM and MASSPA

The MAM formalism was first described by Gribaudo et al. in [10]. Each MAM
consists of two parts, a definition for local agent behaviour and a model describ-
ing their distribution and interactions in space. Agents can evolve through local
and message induced transitions. While local transitions are no different from



those in other formalisms, message induced transitions are novel. Every time an
agent changes state it can emit a message of type M . At the same time another
agent can listen for messages of type M and act on incoming messages. The
perception function u(·), which is part of the model, defines all combinations of
agents in all locations that can exchange messages (cf. [10,11]). In other words
u(·) can be thought of as a directed graph where vertices are pairs of agent state
populations and edges are message channels between them. Note that the MAM
message exchange paradigm is an asynchronous form of communication, as re-
ceiving agents can decide to discard messages without blocking sending agents.
Therefore Markovian Agents (MA)s are said to be autonomous. MASSPA [11],
the Markovian Agent SSPA, simplifies the definition and evaluation of MAMs
and makes comparisons with other formalisms easier. A MASSPA model consists
of sequential agent, topology, agent population size and Channel(·) definitions
(e.g. Fig. 1).

// Agent definitions

Agent OnOff {

On = !(2.0,M,1.0).Off; Off = ?(M,1.0).On + (1.5).On;

};

// Spatial model definition

Locations = {(0),(1),(2)};

// Initial agent distributions

On@(0) = 100; Off@(1) = 200; Off@(2) = 150;

// Channel definition

Channel(On@(1),Off@(0),M) = 1/100;

Channel(On@(0),Off@(1),M) = 1/150;

Channel(On@(2),Off@(1),M) = 1/150;

Channel(On@(1),Off@(2),M) = 1/200;

Fig. 1. Simple MASSPA model for an On/Off agent model generated using MASSPA-
Modeller. In this model agents in the On state emit !(...) messages of type M and
agents in the Off state can turn On if they receive ?(...) a message of this type or
alternatively simply turn On at rate 1.5. The perception function describes all message
channels as well a scaling rate for each channel that will modulate the rate at which
messages can be sent on a particular channel.

3 The MASSPA–Modeller

The example in Fig. 1 shows a fairly simple MASSPA model. However, as the
number of agents states, locations and message types increases, the definition
of the perception function can become large. Moreover, it becomes difficult to
visualise the directions of channels if a model has hundreds or thousands of



channels. One of the main features of MASSPA–Modeller (http://www.doc.
ic.ac.uk/~mcg05) is its ability to mitigate this by allowing users to define high-
level channels such as: Any state in location (0) can send any kind of message
to any state in location (1). Later this high-level channel description is used to
auto-generate actual MASSPA channels.

Const/Agent
Definitions

Location
Definitions

Channel
Definitions

Evaluation

Agents: On = ... Locations = ... Channel(X@l1,Y@l2,M) E[X@l1], Var[X@l1]

Fig. 2. MASSPA-Modeller work-flow

Having illustrated why a visual editor is necessary for the definition of complex
MASSPA models, we now give a brief description of the MASSPA–Modeller
work-flow, which is shown in Fig. 2. As a running example we will describe how
the MASSPA model shown in Fig. 1 can be created in MASSPA–Modeller. The
first step is to define constants, variables, functions and sequential agent def-
initions in the Agents & Variables tab. In our simple model we only define
the latter, i.e. Agent OnOff {On = !(2.0,M,1.0).Off; Off = ?(M,1.0).On

+ (1.5).On;}, but in more elaborate models each transition rate could be repre-
sented as a expression of constants, variables and functions. Once this definition
has been entered, the user can compile the agent definition. Errors and warnings
will be displayed in the console below the editor tab.

Fig. 3. Location definition in MASSPA–Modeller with one disabled location.

Having defined our agent(s), the Locations tab (see Fig. 3) can be used to gener-
ate different topologies such as rectangular or radial location grids. In our case
we have a simple line consisting of 3 locations. Having generated a topology we
can disable any unwanted location and define initial populations for every agent

http://www.doc.ic.ac.uk/~mcg05
http://www.doc.ic.ac.uk/~mcg05


state in each location. In our example we use this feature to create the following
three initial populations On@(0) = 100; Off@(1) = 200; Off@(2) = 150;.

Fig. 4. Channel definition in MASSPA–Modeller.

Once users have create the topology and defined the initial populations, they
can define the communication channels between locations or, if more fine grained
communication control is needed, between specific sender and receiver popula-
tions (see Fig. 4). Channels can be generated using a predefined channel gener-
ator or by adding channels manually. Channel generators are useful for models
with many locations, for instance when we want to create a source to sink style
communication pattern with constraints on the maximum length of a single hop.
In our example it is easiest to create the four channels manually in the editor.

The final tab allows users to generate the MASSPA model and to specify the
evaluation method. Having generated the model, the evaluation method needs
to be defined in GPA syntax [14], e.g. ODEs(stopTime=60.0,stepSize=0.1,

density=10,closure=MASSPA infty){E[On@(2)],Var[On@(2)];} uses fluid an-
alysis to determine the mean and variance of On states in location (2) from time
0 to 60. Pressing the Evaluate button will compile the model and use the GPA–
analyser engine to perform the specified analysis and generate Fig. 5.



Fig. 5. Mean and variance for population On@(2).

4 Conclusions

We have presented a new spatial modelling tool for MASSPA, which allows
users to define all aspects of Markovian Agent models. Users can specify local
agent behaviour using process algebra, while any spatial aspects of the model
can be modelled using visual editors, which is more convenient than defining
communication channels by hand. This combination between letting modellers
define agents using process algebra and spatial aspects using an editor should
be especially appealing to modellers who are familiar with non-spatial process
algebras such as PEPA or GPEPA. In the future we might add this hybrid
modelling approach to DrawNet, as this tool provides a much richer user interface
for composing spatial models than MASSPA–Modeller. A particularly interesting
challenge would be to create a WYSIWYG editor in DrawNet that allows users
to define local agent behaviour as a labelled transition diagram or alternatively
using MASSPA.

References

1. J. Hillston, “A Compositional Approach to Performance Modelling,” Cambridge
University Press, p. 158, 1996.

2. J. Hillston, “Fluid flow approximation of PEPA models,” Second International
Conference on the Quantitative Evaluation of Systems QEST05, pp. 33–42, 2005.



3. R. A. Hayden and J. T. Bradley, “A fluid analysis framework for a Markovian
process algebra,” Theoretical Computer Science, vol. 411, no. 22-24, pp. 2260–2297,
2010.

4. D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” Jour-
nal of Physical Chemistry, vol. 81, no. 25, pp. 2340–2361, 1977.

5. L. Bortolussi and A. Policriti, “Modeling Biological Systems in Stochastic Concur-
rent Constraint Programming,” Constraints, vol. 13, no. 1-2, pp. 66–90, 2008.

6. A. Stefanek, Continuous and spatial extension of stochastic pi-calculus. Master
thesis, Department of Computing, Imperial College London, 2009.

7. R. A. Hayden, A. Stefanek, and J. T. Bradley, “Fluid computation of passage time
distributions in large Markov models,” submitted to Theoretical Computer Science,
2010.

8. A. Stefanek, R. A. Hayden, and J. T. Bradley, “Fluid analysis of energy con-
sumption using rewards in massively parallel Markov models,” in 2nd ACMSPEC
International Conference on Performance Engineering ICPE, pp. 121–132, 2011.

9. V. Galpin, “Towards a spatial stochastic process algebra,” in Proceedings of the
7th Workshop on Process Algebra and Stochastically Timed Activities (PASTA),
(Edinburgh), 2008.

10. M. Gribaudo, D. Cerotti, and A. Bobbio, “Analysis of On-off policies in Sensor
Networks Using Interacting Markovian Agents,” 6th IEEE International Confer-
ence on Pervasive Computing and Communications PerCom (2008), pp. 300–305,
2008.

11. M. C. Guenther and J. T. Bradley, “Higher moment analysis of a spatial stochastic
process algebra.,” in 8th European Performance Engineering Workshop - EPEW
2011, 2011.

12. D. Cerotti, M. Gribaudo, A. Bobbio, C. Calafate, and P. Manzoni, “A Markovian
Agent Model for Fire Propagation in Outdoor Environments,” in 7th European
Performance Engineering Workshop EPEW (A. Aldini, M. Bernardo, L. Bononi,
and V. Cortellessa, eds.), vol. 6342 of Lecture Notes in Computer Science, pp. 131–
146, Springer Berlin Heidelberg, 2010.

13. D. Cerotti, M. Gribaudo, and A. Bobbio, “Presenting Dynamic Markovian Agents
with a road tunnel application,” in IEEE International Symposium on Modeling
Analysis Simulation of Computer and Telecommunication Systems MASCOTS,
pp. 1–4, IEEE, 2009.

14. A. Stefanek, R. Hayden, and J. Bradley, “A new tool for the performance analysis
of massively parallel computer systems,” Eighth Workshop on Quantitative Aspects
of Programming Languages QAPL 2010 March 2728 2010 Paphos Cyprus, 2010.

15. A. Baravalle, G. Franceschinisy, M. Gribaudo, V. Lanfranchi, M. Iaconoth, N. Maz-
zoccath, and V. Vittoriniu, “DrawNET Xe: GUI and Formalism Definition Lan-
guage,” Informatica, 2003.

16. F. Klügl, R. Herrler, and M. Fehler, “SeSAm: Implementation of Agent-Based
Simulation Using Visual Programming,” Components, no. May, pp. 1439–1440,
2006.

17. D. Cerotti, E. Barbierato, and M. Gribaudo, “A tool suite for modelling spatial
interdependencies of distributed systems with Markovian Agents,” tech. rep., 2011.


	MASSPA-Modeller: A Spatial Stochastic Process Algebra modelling tool

