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Abstract. Fluid analysis of Population CTMCs with non-linear evolu-
tion rates requires moment closures to transform a linear system with
infinitely many ordinary differential equations (ODEs) into a non-linear
one with a finite number of ODEs. Due to the ubiquity of kinetics with
quadratic rates in physical processes, various closure techniques have
been discussed in the context of systems biology and performance analy-
sis. However, little research effort has been put into moment closures for
higher-order moments of models with piecewise linear and higher-order
polynomial evolution rates.
In this paper, we investigate moment closure techniques applied to such
models. In particular we look at moment closures based on normal and
log-normal distributions. We compare the accuracy of the moment ap-
proximating ODEs with the exact results obtained from simulations. We
confirm that by incorporating higher-order moment ODEs, the moment
closure techniques give accurate approximations to the standard devia-
tion of populations. Moreover, they often improve the accuracy of mean
approximations over the traditional mean-field techniques.
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1 Introduction

Population models assume that a large number of identical individuals belong-
ing to a particular population interact with individuals from other populations
and thereby alter population levels. This abstraction from individuals to pop-
ulations vastly reduces the complexity and the state-space of the underlying
model. Common examples of population models are: chemical reaction mod-
els [1] where populations represent molecule concentrations; ecology models [2]
describing the behaviour of groups of animals or plants; and software perfor-
mance models [3] capturing the interactions between components in massively
parallel systems. The analysis of such models focuses on the evolution of differ-
ent populations over time and modellers often assume exponentially distributed
rates depending on the prevailing population levels. Under those assumptions
a population model can be represented as a lumped Continuous Time Markov
Chain (CTMC), which we will refer to as a Population CTMC (PCTMC). The
class of PCTMC models is popular among modellers since the statistical mo-
ments of the underlying stochastic process can be approximated using ordinary



differential equations (ODEs) [4]. As populations become larger, these so-called
“fluid approximations” become more accurate, while at the same time the eval-
uation cost remains unaffected. As the cost of stochastic simulation increases
with the population size, fluid analysis is often the only computationally feasible
method for evaluating models with large populations.

1.1 Moment closures and non-linear rates

The evolution of moments over time in a PCTMC with finitely many popula-
tions can always be described exactly by a system of linearly coupled ODEs.
This system of ODEs is only finite if all the evolution rates of the PCTMC are
linear combinations of population levels. In case of non-linear evolution rates,
the right-hand sides of the moment ODEs contain terms that require higher-
order moments, which have to be captured by ODEs requiring even higher-order
moments, thus resulting in an infinite system of ODEs. For example the evolu-
tion of the mean approximating ODEs may depend on population covariances,
covariance ODEs on skewness and so on. To allow numerical evaluation of such
unclosed systems of ODEs, moment closure functions can be applied, which
transform an infinite system of linearly coupled ODEs into a finite system of
non-linear ODEs. Since there are infinitely many possible closure functions, a
common approach is to assume that the population levels at each point in time
are distributed according to a particular multivariate distribution, e.g. the mul-
tivariate normal or the log-normal distribution.

PCTMCs with quadratic evolution kinetics have been extensively covered
in the theoretical ecology and systems biology literature [5,6]. Many perfor-
mance analysis models, however, exhibit other non-linear evolutions rates such
as the piecewise linear min and max functions in stochastic process algebras [7],
stochastic Petri nets [8] or multi-server queueing networks, or higher-order poly-
nomial rates. While piecewise linear functions allow modellers to restrict the
speed of evolutions and the size of population levels, higher-order polynomial
rates are useful when modelling non-linear feedback. Moreover, when evolution
rates contain fractions, logarithmic or exponential rates, Taylor expansions of
these functions also yield higher-order polynomials.

1.2 Overview of the paper

While the first order moments of piecewise linear and higher-order polynomial
rates can often be accurately approximated using the mean-field closure [9], the
evolution of second and higher-order moments using ODEs is more sensitive to
the choice of the closure. In this paper we will investigate the effect of different
normal and log-normal moment closures on the accuracy of first and second or-
der moment approximating ODEs for different types of models with piecewise
linear and cubic polynomial evolution rates. The paper is organised as follows.
In Section 2 we formally introduce PCTMCs and moment closure techniques.
Section 3 introduces three benchmark models and describes the test framework



used to conduct the error comparison experiments. The resulting data is pre-
sented and analysed in Section 4. Finally we conclude and highlight further work
in Section 5.

2 PCTMCs

A Population continuous time Markov chain (PCTMC) consists of a finite set
of species S = {s1, . . . , sn}, and a set E of transition classes. Each state in
a PCTMC is expressed as an integer vector P = (P1, . . . , Pn) ∈ Zn, with
the ith component representing the current population level of a species i. A
transition class e = (re(·), ce) ∈ E describes stochastic events with exponentially
distributed duration d at rate re : Zn −→ R and change the current population
vector according to the change vector ce, that is sets

P (t+ d) = P (t) + cs

The analogue to PCTMCs are Chemical Reaction Systems, where P describes
a molecule count vector and transition classes represent chemical reactions be-
tween the molecules with r being the reaction rate function and c the stoichio-
metric vector. For clarity, we will adapt a notation similar to that of chemical
reactions and denote by

si1 + · · ·+ sik → tj1 + · · ·+ tjl at r(P )

the transition class with change vector (#1(I)−#1(J), . . . ,#n(I)−#n(J)) ∈ Zn
where I = i1, . . . , ik, J = j1, . . . , jl and #h(L) gives the count of h in the list L,
and rate {

r(P ) if Pi ≥ #i(I) for all i = 1, . . . , n

0 otherwise

An important aspect of PCTMC models is that the approximations to the
evolution of moments of the underlying stochastic process of the population
levels can be represented by a system of ODEs [10,11]

d

dt
E[M(P (t))] =

∑
e∈E

E[(M(P (t) + ce)−M(P (t)))re(P (t))] (1)

where M(P ) defines the moment to be calculated. To obtain the ODE describing
the evolution of the mean of a population si for instance, all we need to do is
to substitute M(P ) = Pi in the above equation. Similarly, for higher moments
we use a suitable moment function M(P ), for example M(P ) = P1P2 for the
evolution of the mean product of the populations of s1 and s2.

2.1 Moment closures

In many PCTMC models, Equation (1) results in a linear but infinite system of
moment approximating ODEs. This happens if there are evolution rates re(P )



with non-linear polynomials in the population counts, such as re(P ) = PiPj .
When expanding Equation (1) for such systems, moment ODEs will depend on
higher-order moment ODEs. In a simple example with a transition class

s1 + s2 → s3 at r(P ) = P1P2

the ODE describing the mean of s1, E[P1(t)], depends on a second order moment
E[P1(t)P2(t)], the ODE for this moment depends on third order moments such
as E[P1(t)2P2(t)] and so on. To numerically solve such infinite systems of coupled
ODEs, one option is to close these equations at some order, e.g. approximating
any higher-order moments using moments with order no larger than the order
of the highest moment we wish to obtain. Generally this involves changing the
linear but infinite system of moment ODEs into a finite non-linear system of
ODEs. In the literature this transformation is referred to as a moment closure.

To express a higher-order moment in terms of lower-order moments, moment
closure techniques often assume that the populations at each point of time are
(approximately) realisations from a particular family of probability distributions.
Many closure methods such as the normal [5], log-normal [6] or beta-binomial [12]
are named after such an assumption.

We briefly describe four types of moment closures, the mean-field [9], normal,
min-normal and log-normal closure methods respectively. In the following we will
write E[P (m)] for the raw joint moment E[Pm1

1 · · ·Pmn
n ] for a random population

vector P , where m = (m1, . . . ,mn) ∈ Zn. We say o(m) = m1 + . . . +mn is the
order of the joint moment.

Mean-field Mean-field analysis [9] methods investigate the evolution of the
mean of population vectors. The mean-field closure approximates higher-order
moments such as E[Pi(t)Pj(t) · · ·Pk(t)] by the product of the individual ex-
pectations E[Pi(t)]E[Pj(t)] · · ·E[Pk(t)]. In other words, the mean-field approach
ignores the covariance between any two populations. This produces good ap-
proximations for population means, especially when the populations are high.
However in some model, for instance in the circadian clock model the mean-field
closure does not perform well [11,13].

Normal closure The normal moment closure [5] can be applied to any sys-
tem of ODEs originating from a PCTMC for which we want to find 2nd or
higher-order moments. It assumes that the populations at each point in time
are approximately multivariate normal and therefore all third- and higher-order
moments can be expressed in terms of means and covariances. This relationship
is captured by the Isserlis’ theorem [14]: For P (t) multivariate normal with mean
µ and covariance matrix (σij) we have

E[(P − µ)(m)] = E[(P1 − µ1)m1 · · · (Pn − µn)mn ] = 0, if o(m) is odd
E[(P − µ)(m)] =

∑∏
E[(Pi − µi)(Pj − µj)], if o(m) is even

(2)

where
∑∏

sums through all the distinct partitions of 1, . . . , n into disjoint sets
of pairs i, j. If some elements in m are greater than one, then certain pairs i, j



will appear multiple times in the resulting sum. To obtain the raw moment,
we need to expand the central moment in Equation (2) first and subsequently
rearrange the equation. For example, instead of including an ODE for the third
order joint raw moment E[P1(t)P2(t)2] we can close the expansion at second
order by using the approximation

E[P1(t)P2(t)2] ≈ 2E[P2(t)]E[P2(t)X1(t)] + E[P1(t)]E[P2(t)2]
−2E[P1(t)]E[P2(t)]2

(3)

which yields E[(P1(t)− µ1(t))(P2(t)− µ2(t))2] = 0 as required, since the multi-
variate normal distribution is not skewed.

Min-normal closure The min-normal moment closure has been previously
applied in the analysis of feedback reward models where the min function guar-
antees a feedback rate to stay non-negative [15]. It aims to improve the mean-
field approximation of expectations such as E[min(Pi(t), Pj(t))], often arising
in PCTMC models coming from the PEPA process algebra or stochastic Petri
nets. The mean-field closure with the approximation min(E[Pi(t)],E[Pj(t)]) on
the right hand side of the ODEs is accurate in the absence of switch points [16],
that is the time intervals when the two means E[Pi(t)] and E[Pj(t)] are suffi-
ciently distant. This depends on the variance of the two random variables and
large errors occur whenever E[Pi(t)] ≈ E[Pj(t)]. Moreover, if switch points only
appear during the transient phase of the model then the steady-state mean-field
approximation is usually accurate.

However, we can produce a better estimate for the min expression under
the assumption that populations are approximately multivariate normal. Using
a result for the moments of a minimum of two bivariate normal random vari-
ables [17], we can use the following identity for P1, P2 bivariate normal (where
Φ and φ are the CDF and PDF of a standard normal random variable):

E[min(Pi, Pj)] = E[Pi]Φ
(

E[Pj ]−E[Pi]
θ

)
+ E[Pj ]Φ

(
E[Pi]−E[Pj ]

θ

)
−θφ

(
E[Pj ]−E[Pi]

θ

) (4)

where θ = (Var[Pi]− 2Cov[Pi, Pj ] + Var[Pj ])
1/2

. The right hand side of higher-
order moment ODEs contains terms such as E[Pk min(Pi, Pj)]. In that case,
experiments suggest that a good heuristic is to insert Pk into the above equation,
capturing some covariance:

E[Pk min(Pi, Pj)] ≈ E[PkPi]Φ
(

E[Pj ]−E[Pi]
θ

)
+ E[PkPj ]Φ

(
E[Pi]−E[Pj ]

θ

)
−E[Pk]θφ

(
E[Pj ]−E[Pi]

θ

) (5)

All other terms are closed using the normal moment closure described above.

Log-normal closure Instead of assuming a multivariate normal distribution it
is also possible to use the log-normal moment closure which provides a purely



multiplicative way of closing higher-order moments. In [6], Singh et al. explain
how this closure can be applied to chemical reaction systems. Assume we want to
approximate the uncentered joint moment E[P (m)] where o(m) = m+x, m, x ∈
Z+ using only joint moments of order up to m. Let M = {m1, . . . ,mk} be the
ordered set containing all these moments up to the order m then the log-normal
closure is defined by

E[P (m)] ≈
k∏
p=1

(
E[P (mp)]

)γp
(6)

where the exponents γp form the unique solution to the following system of linear
equations

Cm
ms

=
k∑
p=1

γpC
mp
ms , ∀s = {1, . . . , k} where Ch

l =

(
h1
l1

)
· · ·
(
hn
ln

)
(7)

Further details regarding the derivation of Equation (7) can be found in [6]. If
we were to close the third order joint moment E[P1(t)P2(t)2] at second order
using the log-normal closure technique,we obtain

E[P1(t)P2(t)2] ≈ E[P2(t)2]E[P1(t)P2(t)]2

E[P1(t)]E[P2(t)]2
(8)

Apart from the mean-field analysis, all the above closures can calculate sec-
ond and higher-order moments. As we will show in Section 4, higher-order mo-
ments usually improve the accuracy of the mean approximations. In case of
PCTMCs with evolution rates using the min function such as in the GPEPA
process algebra, it is also possible to obtain higher-order moments without af-
fecting the means. For simplicity, we will refer to this closure as mean-field
whenever comparing closures, such as in Figure 4 and Table 2.

3 Evaluation framework

In this section we describe the techniques and benchmark models we use to
compare the different moment closures in the following section. Table 1 gives an
overview.

3.1 Hybrid peer-to-peer model

A simple and commonly used non-linear evolution rate in PCTMCs is the
quadratic mass-action kinetics. As an example, we look at a simple abstract
model of a hybrid peer-to-peer system. The system consists of users who already
own a copy of some data to be distributed. Other users are trying to obtain
the data. Additionally, to increase the speed of data distribution, the system
includes dedicated servers that can perform faster seeding. Users with data can
leave the system and potentially come back.



Model Rates Closures n #P

Peer-to-peer linear, quadratic Mean-field
Normal order 2, 3 5 30

Client/server linear, Min, min-normal
min of linear 6 30

Pheromone routing linear, quadratic, Mean-field
cubic, min of quadratic Normal order 2, 3

Log-normal order 2 15 12

Table 1. An overview of the models used to compare the different closures. The second
column shows the number n of different species (populations) in the model. The last
column shows the number #P of different parameter configurations we evaluated the
models on.

There are 5 populations (Ul ,Us ,Uf ,Son ,Soff ) ∈ Z5 corresponding to users
without the data, with the data, those who left the system and servers in on/off
states respectively. Initially, there is a fixed number of users and servers in the
off state – the initial populations are (Nl, Ns, 0, 0, NS).

We assume that the users and servers are uniformly distributed across the
network and equally likely to initiate communication with each other. This is
often captured by the mass action kinetics – for example, the rate of the event
where a user seeds the data to a user without the data is proportional to the
product of the two populations, i.e. to Ul(t) · Us(t). The system behaviour can
be captured by 6 transition classes

Soff → Son at Soff (t) · ron

Son → Soff at Son(t) · roff

Ul + Us → Us + Us at Ul(t) ·Us(t) · rseed

Ul + Son → Us + Son at Ul(t) · Son(t)rseed,s

Us → Uf at Us(t) · rleave

Uf → Ul at Us(t) · rreturn

In the evaluation, we varied the initial count NS and the rate rleave .

3.2 GPEPA client/server model

The second model we look at demonstrates the use of the bounded capacity
kinetics. We use the GPEPA process algebra [7] to define a simple client/server
model. The modelled system consists of a number of clients and servers. Clients
can request data from servers, receive data from one of the servers and then
perform some independent action with it. Servers, in addition to providing the
data, are susceptible to failure in which case they have to be reset. To cope with
the failures, clients repeat the requests after a timeout.



Client
def
= (request , rreq).Client wait Server

def
= (request , rreq).Server get

+(fail , rfail).Server fail

Client wait
def
= (data, rdata).Client think Server get

def
= (data, rdata).Server

+(timeout , rtimeout).Client +(fail , rfail).Server fail

Client think
def
= (think , rthink ).Client Server fail

def
= (reset , rreset).Server

Clients{Client [NC ]} ��
{request,data}

Servers{Server [NS ]}

Using the operational semantics of GPEPA, we can obtain a PCTMC. There
are 6 populations (C ,Cw ,Ct ,S ,Sg ,Sb) ∈ Z6, each corresponding to a state of
the client/server components. The initial state given by the system equation is
(NC , 0, 0, NS , 0, 0). The GPEPA process algebra assumes bounded capacity co-
operation – that is, the rate of cooperation between two components is no faster
than the individual rates. This introduces the min function into the transition
rates. In total, there are 7 transition classes:

C + S → Cw + Sg at rreq ·min(C (t),S (t))

Cw + Sg → Ct + S at rdata ·min(Cw (t),Sg(t))

Ct → C at rthink · Ct(t)

Cw → C at rtimeout · Cw (t)

S → Sb at rfail · S (t)

Sg → Sb at rfail · Sg(t)

Sb → S at rreset · Sb(t)

During the evaluation we varied the initial number of clients NC and the rate
rtimeout .

3.3 Spatial pheromone routing model

The last model we discuss is a spatial model that represents the spread of phero-
mone in a multi-hop Wireless Sensor Network (WSN). In nature, pheromone is
a hormone laid down by colony-based insects, to indicate popular routes to food
sources or new nest sites. In a similar manner pheromone gradients have been
adapted in the WSN literature as an abstract means of studying the evolution
of routes from source to sink nodes [18]. Figure 1 visualises the topology of our
WSN model [19], where 1 is the sink node and node 15 is the sensor furthest
from it. The pheromone is at the highest level in the node 1 and the lowest level
in the node 15. We assume that the nodes exchange pheromone information us-
ing a Manhattan style communication pattern. The resulting fluid pheromone
level ph is assumed to decrease exponentially at a cubic rate proportional to
ph@(loc)

3
/c31, where c1 is a constant. On the other hand the pheromone level in-

creases exponentially at a rate governed by the amount of excess pheromone that



neighbouring nodes have over the receiving node. For instance the pheromone
level at location 3 grows at rate

(max(0, ph@(2 )− ph@(3 )) +max(0, ph@(6 )− ph@(3 )))/c2; (9)

The model can be extended to analyse transient and steady-state routing prob-
abilities as well as packet flows in the network [20], but here we only model the
pheromone spread. For the comparison test we varied the constant parameters
c1, c2.

1 4 7 10 13

2 5 8 11 14

3 6 9 12 15

Fig. 1. Node 1 is the sink and has the highest pheromone level. The level decreases
with increasing hop distance from the sink [19].

3.4 Accurate simulation

In order to allow a fair error comparison between simulations and ODEs, we
implemented a Gillespie simulator, which creates replications until a certain
confidence interval is reached for all the population moments that we are esti-
mating. The confidence interval for the sample statistics is computed using a
Student’s t-distribution with the degrees of freedom depending on the sample
size. In order to compute the confidence interval of distance squared samples,
we also keep track of the third and fourth order central sample moments. As an
example, in the pheromone model we say that the simulation sample averages of
mean and distance squared have converged if the relative half-width of the 95%
confidence interval is < 1% at any point in time. To achieve this, the simulation
of this model requires about 125k sample traces. The other two models require
even more replications. We also noticed that small parameter changes in some
models can heavily impact the convergence behaviour of the accurate simulation.

3.5 Computation of error

To evaluate accuracy of the different closures we compute population moments
in each of the 3 models above, trying a large number of parameter configura-
tions. For a particular model and a set of parameters, the simulation provides
a confidence interval estimate [E[M(t)]L,E[M(t)]U ] of each moment M at each
time point t until a specified time T . At the same time, each closure provides an



approximation Ẽ[M(t)]. The absolute error of the closure for the moment M at
time t then is

eabs(M(t)) =


0 if Ẽ[M(t)] ∈ [E[M(t)]L,E[M(t)]U ]]

Ẽ[M(t)]− E[M(t)]U if Ẽ[M(t)] > E[M(t)]U

E[M(t)]L − Ẽ[M(t)] if Ẽ[M(t)] < E[M(t)]L

To get the relative error, we divide the absolute error by the point estimate, i.e.

erel(M(t)) = eabs(M(t)) · 2

|E[M(t)]L + E[M(t)]U |

For each model, we look at means and standard deviations of all the populations
when available. We aggregate the respective errors at each order: For each time
t, we will define the average/maximum first order error as the average/maximum
relative error across all the means, that is

e1avg(t) = 1/n

n∑
i

erel(Pi(t)) e1max(t) = max
i=1,...,n

erel(Pi(t))

Similarly, we define the second order aggregate errors e2avg(t) and e2max(t) by re-

placing E[Pi(t)] with
√

Var[Pi(t)] above. For each closure, we further aggregate
the above errors by taking the average/maximum of each error across a large
number of parameter combinations. We define ēiavg(t) and ēimax(t) as the average

of eiavg(t) and maximum of eimax(t) over all parameter combinations respectively.
Additionally, we also look at the effects of scaling the initial populations on the
error of the moment closure approximations. We pick a single parameter con-
figuration and calculate the aggregate average and maximum errors eimax(t) and
eiavg(t). We repeat this when the initial populations in the model are multiplied
by a constant.

4 Closure comparison

In this section we will evaluate the accuracy of different moment closures with
respect to results from the accurate simulation. For each of the above three
models, we plot ēiavg(t) and ēimax(t) for i = 1, 2 (the relative errors in mean and

standard deviation). Additionally, we plot eiavg(t) and eimax(t) for a single pa-
rameter combination at 3 different scales of the system, illustrating the improved
accuracy as the model size increases. Table 2 compares the numerical values of
the errors.

4.1 Hybrid peer-to-peer model

Figure 2 shows the plots of the average and maximum relative errors ēiavg(t) and

ēimax(t) in the sample peer-to-peer model.
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Fig. 2. Comparison of closures for the peer-to-peer model. The dotted lines are maxi-
mum relative errors ēimax(t) over all the experiments, the solid lines the average relative
errors across a number of different model parameters ēiavg(t).

In case of approximations of the means, the mean-field analysis already gives
quite accurate results, with the average error over all populations in the order of
1% and the maximum of 26% occurring only in certain populations and limited
time intervals for each parameter configuration. As we use higher-order moments,
we can see the error decrease. The second-order normal closure improves these to
0.2% average and 12% maximum error respectively and the third order further
to 0.03% and 3%. The normal closures give quite accurate approximations to
standard deviations. For a short initial time period, the relative error is higher
due to the very small values of the standard deviation. However, for most of
the considered time, the second-order normal closure gives a maximum error of
around 27% and average error 7% and the third-order closure reduces these to
19% and 0.7% respectively. Figure 3 shows the relative errors for a single param-
eter combination at 3 different scales of the system – when initial populations
are scaled by 1, 10 and 100 respectively.

We can see that the error in all the 3 closures decreases with higher scales,
both in case of means and standard deviations. The y axis labels not shown for
the plots at scales 10 and 100 are the same as for scale 1. At the scale 100, the
normal closures give a zero error with respect to the 2% interval estimate from
the simulation for most of the time.

4.2 Client/server model

Figure 4 shows the average and maximum relative errors for the client/server
model. Similar to the peer-to-peer model, the mean-field mean approximations
are quite accurate, with maximum error 29% and average error no more than
4%. The min-normal closures is particularly effective here and brings down the
errors to 2% and 0.02% respectively. As mentioned above, in case of bounded
capacity rates we can also obtain standard deviation estimates using the mean-
field method. Although in many cases this can be at least quantitatively accurate,
the maximum error is quite large at 77%, with average at 4%. The min-normal
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Fig. 3. Effect of scaling on the accuracy of moment closures in the peer-to-peer model.
All the plots are shown with the same (logarithmic) scale. The gaps on the plots
represent zero error values.

closure results in an improvement to 15% and 0.8% respectively. Figure 5 shows
the effect of scaling in the client/server model.
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Fig. 4. Comparison of mean-field and min-normal closures for the client/server model.

We can see a decrease in both errors as the model size increases, similar to
the case of the peer-to-peer model. There are more regions where the errors stay
non-zero even at the highest scale. This is possibly caused by the presence of
switch points where the used min approximations are particularly inaccurate.
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Fig. 5. Effect of scaling on the accuracy of moment closures in the client/server model.
The gaps on the plots represent zero values of the error.

4.3 Spatial pheromone routing model
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Fig. 6. Comparison of closures for the pheromone model. Dotted lines are maximum
errors over all the experiments, solid lines the average.

The comparison results are shown in Figure 6. As can be seen both mean
and standard deviation of the pheromone levels are approximated well by the
ODEs. It is surprising though, that the aggregated maximum relative error in the
means estimated by the mean-field closure is lower than the one of higher-order
estimates. Further analysis revealed that the mean estimate for larger pheromone
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Fig. 7. Effect of scaling on the accuracy of moment closures in the pheromone model.
The gaps on the plots represent zero values of the error.

populations ph@(1 ), ph@(4 ) and ph@(5 ) is actually much better when using a
normal closure with ODEs up to and including the third moment. For smaller
populations ph@(12 ), ph@(14 ) and ph@(15 ), the mean-field estimate is better
in this model, but Figure 7 indicates that this difference becomes smaller as we
increase the pheromone population size. Moreover, we found that the normal
closure at second order as well as the log-normal closure at second order gave
equally good estimates for mean and standard deviation of populations as the
third order normal closure.

Mean-field (Min-)normal 2 Normal 3
mean s.d. mean s.d. mean s.d.

max avg max avg max avg max avg max avg max avg

Peer-to-peer 26 1 — 12 .2 27 7 3 .03 19 .7

Client/server 29 4 77 4 2 .02 15 .8 —

Pheromone 4 1 — 4 1 26 5 ←

Table 2. Summary of the aggregate relative (%) error in the benchmark models. The
numbers on the left of each column are the maximum of ēimax(t) over all t and the
numbers on the right the maximum of ēiavg(t) respectively.



5 Conclusions and future work

We have presented a moment closure comparison framework for ODEs originat-
ing from PCTMCs with highly non-linear evolution rates. We evaluated four
different moment closure techniques on three different PCTMC models with
various parameter configurations.

We have confirmed that the mean-field first-order moment approximations
generally produce good approximations of average population traces. However, in
presence of quadratic and piece-wise linear minimum rates, higher-order moment
closures often outperform the mean-field approximation as shown in the peer-to-
peer and the client server experiments. Although the more complex pheromone
model indicates that this is not necessarily always the case, we were able to show
that this was likely due to the presence of small populations.

Aside from the mean approximation our experiments show that the gener-
ated normally and log-normally closed ODEs produce good approximations for
the standard deviation of population moments. This is particularly important
because the simulation sample averages of second order moments often require a
very large number of replications to achieve a tight interval estimate. In certain
cases the second order ODEs could be solved in less than 1% of the time it took
to finish the simulation with a 95% CI with maximum relative CI width of < 2%.

Another interesting observation is the fact that in the pheromone model the
log-normal closure produced almost identical results as the normal closure, even
though the underlying distribution assumption and the resulting closed terms
are different. Generally, however, we prefer the normal closure over the log-
normal one as the latter becomes numerically unstable in models where some
populations tend to 0.

Further research is required to make a more informed choice of which moment
closure to use for which class of models. To do so, we plan to analyse the actual
distributions of the simulated populations in the future and subsequently see if
the moment closure corresponding to the distribution family closest to the exact
distribution of the stochastic process will indeed produce the most accurate ODE
approximations for the underlying moments.
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