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Fluid-approximation or mean-field techniques are currently very popular approaches to the efficient analysis of massively-
parallel Markov models. In this paper, we exploit the ODE-representation of these approximations to develop efficient tech-
niques for simultaneous partially-symbolic numerical integration over parameter ranges. In particular, we borrow the Taylor
model data structure of Makino and Berz [14] from the field of verified numerical integration. We use this to compute, in
an efficient manner, tight bounds on the range of the ODE solutions over time with parameters lying in large intervals. This
has applications to fast parameter sweeping, sensitivity analysis and global optimisation of model parameters in perfomance
models amenable to fluid approximation.

1 Introduction
Fluid-approximation or mean-field techniques have become very popular recently as a means of address-
ing the state-space explosion problem for Markov chains consisting of large populations of interacting
components [e.g. 2, 3, 5, 8, 10, 26]. This kind of approach is based on the construction of ordinary dif-
ferential equations (ODEs) from a Markovian model which approximate the evolution of the number of
components in each of their local states over time. Such an approach is very powerful since it results in
an exponential reduction in the analysis complexity with respect to traditional explicit-state approaches.

The availability of these techniques has made it possible to analyse fairly large parameter spaces in
reasonable periods of time by adopting the simple strategy of iterating one by one over each parameter
combination and solving the corresponding set of ODEs [e.g. 6, 7, 9, 23, 24]. However such a brute-
force approach will of course still become costly in the presence of large or multi-dimensional parameter
ranges, even given the relatively low cost of the numerical integration of each of the individual ODE
systems. A further disadvantage is the necessary discretisation of continuous parameter ranges and thus
the potential accidental omission of important model configurations.

In a more ideal world, we would be able to keep track of the entire possible solution space over
continuous ranges of parameters by performing only one numerical integration operation. In this paper
we make tentative initial steps in this direction by leveraging devices developed in the field of verified
numerical integration.

Verified numerical integration is the rigorous numerical computation of guaranteed enclosures of
solutions to differential equations [e.g. 4, 12, 16, 21]. This is in contrast to traditional approximate
solution methods such as the Runge–Kutta approaches which compute only an approximate solution
up to some local error tolerance. A verified solver usually proceeds at discrete time steps much like
traditional approaches. However, at each time step, it does not yield a single point solution, but rather a
range guaranteed to contain the formal exact solution at that point. This is necessary in order to capture
the uncertainty arising from the discrete integration at each time step and also that due to floating point
round-off errors. An immediate requirement of such an approach is therefore the ability to propagate
solution ranges from one time step to the next, as opposed to just propagating points. To do this efficiently
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and to avoid rapid growth in the bounds requires inexpensive and compact representations for the solution
range at each time point.

For the purposes of solving systems of ODEs arising from fluid analysis of performance models,
the traditional approximate solution approaches appear to be sufficient. Indeed, verified numerical inte-
gration would appear to be an unnecessary additional computational overhead given the fact that fluid
analysis is already a (normally unquantified) approximation and, further, that model parameters are rarely
specified with quantitative certainty. The purpose of this paper is not to attempt to apply verified numer-
ical integration techniques to fluid analysis. Rather, we wish to borrow from this field, devices and
techniques, which will allow us to achieve our goal of simultaneously performing a traditional approxi-
mate numerical integration over parameter ranges. This would seem like a promising approach since the
kernel of the verified numerical integration problem — the efficient propagation of solution ranges — is,
as we will see, directly related to the problem we have set out to address.

In the next section we will set out the problem of interest formally. We will then introduce the
required technical devices borrowed from the field of verified numerical integration, specifically, interval
methods and Taylor models. Finally, we will exhibit our approach on a simple peer-to-peer software
update model.

2 Bounding of numerical solutions to initial value problems over parameter ranges
In this section we will set out formally the problem of interest. For simplicity we will consider here
a straightforward fixed step-size Euler method as our basic numerical integration algorithm. However,
we do not see why these ideas could not be extended to more efficient iterative solvers such as explicit
Runge–Kutta methods with adaptive step size. We also consider here only time-autonomous systems,
but again, this is just for the sake of brevity.

Let ẏ(t,p) := d
dt y(t,p) = f(y(t,p),p) be the initial value problem (IVP) of interest where for t ∈R+,

y(t,p) ∈ Rn is the solution vector, p ∈ Rk is the vector of parameters and y(0,p) = g(p) is the vector of
initial conditions.

Given some step size h ∈R+ and number of steps m ∈ Z+, inducing a sequence of times t j := jh for
0 ≤ j ≤ m, we then define ỹ(t j,p) to be the approximate numerical solution of this IVP computed, as
mentioned above, in this case by applying the Euler method in the standard manner:

ỹ(t j,p) := ỹ(t j−1,p)+hf(ỹ(t j−1,p),p) (1)

for 0 < j ≤ m and taking ỹ(t0,p) := g(p).
Let pL,pH ∈ Rk specify an interval box of parameters P = [pL,pH ] by:

[pL,pH ] := {p ∈ Rk : pi ∈ [pL
i , pH

i ] for i = 1, . . . ,k}

Our goal here is to compute time-varying bounds ỹL(t j,P) and ỹH(t j,P) efficiently such that for all
0≤ j ≤ m and all p ∈ P:

ỹL(t j,P)≤ ỹ(t j,p)≤ ỹH(t j,P) (2)

where vector inequalities are taken component wise.

3 Interval arithmetic
Interval arithmetic [e.g. 1, 11] extends standard arithmetic operations to operate directly on intervals. An
interval X = [xL,xH ] for xL,xH ∈ R with xL ≤ xH is defined in the standard way as the set of all points
x ∈R such that xL ≤ x≤ xH . We identify points x ∈R with the interval [x,x]. The midpoint and width of
an interval X are denoted by m(X) := (xL +xH)/2 and w(X) := xH−xL, respectively. An interval vector



X = [xL,xH ] for xL,xH ∈ Rn is defined, as in the last section, by the Cartesian product of the constituent
component intervals Xi = [xL

i ,x
H
i ].

Basic arithmetic operations � ∈ {+,−×,÷} are defined for intervals by:

X�Y := {x� y : x ∈ X ,y ∈ Y}

so that, for example, [xL,xH ]+[yL,yH ] = [xL+yL,xH +yH ] and similarly for the other operations. Interval
versions of other elementary functions can be defined similarly. For an arbitrary real function h(x) and
interval X , an interval extension H(X) is an interval containing h(x) for each x ∈ X , that is, H(X) ⊇
{h(x) : x ∈ X}. Interval extensions are often computed straightforwardly by substituting the interval
X into h(x) and evaluating the expression using interval arithmetic. However, the resulting interval
is often wider than the actual function range. Consider for example, the function g(x) := x/(x− 1)
evaluated over the interval X := [3,4], so that the natural interval extension is G([3,4]) = [3,4]/([3,4]−
1) = [3,4]/[2,3] = [1,2]. However the actual range of g(x) over X is [4/3,3/2]. The reason for this
overestimation is the so-called dependency problem; the fact that x occurs twice in the definition of g(x)
is not recognised by the natural interval extension and it is evaluated as if each occurrence was a different
variable. In fact, in this case, the definition of g(x) can be rewritten as 1+1/(x−1), so that the variable
x occurs only once. Then the natural interval extension is the exact range [4/3,3/2].

The situation gets worse when considering interval vectors. For example, if X := [−1,1] and we wish
to enclose the vector function g(x) := (x,x)T over X , performing the natural interval extension on each
component of the vector yields the box [−1,1]× [−1,1]. The true range, however, is just the line segment
between (−1,−1)T and (1,1)T . The problem of overestimation worsens here dramatically because the
true range cannot be enclosed exactly as an interval vector. This phenomenon is known as the wrapping
effect since non-interval ranges are wrapped by interval enclosures.

A naı̈ve approach to computing bounds ỹL(t j,P) and ỹH(t j,P) as specified in the previous section
would then simply be to evaluate y(0,p) and Eq. (1) recursively using interval arithmetic. Unfortunately,
such a direct approach is likely to lead quickly to massive overestimation due to the aforementioned de-
pendency problem and the wrapping effect. This approach is the unverified equivalent of Moore’s direct
interval method [20] for verified numerical integration. Various refinements to ameliorate the wrapping
effect do exist, such as the parallelepiped method [19, 20], where, at each time step, the solution enclo-
sure is represented by parallelepipeds instead of rectangular boxes. The QR method [13] was developed
to stabilise this approach numerically by orthogonalisation of the associated transformation matrices. We
believe that it would be fairly straightforward to benefit from these ideas in the unverified case developed
in this paper. However, for parameter ranges which are not extremely small, we would still expect the
results to be poor since the dependency problem remains largely untempered. Furthermore, any approach
based just on interval methods is restricted by the fact that interval-based enclosures must be convex.

Since the results are usually fairly poor, and for the sake of brevity, we do not give any examples
of purely interval-based bound computations here. Instead, we will proceed to introduce a much more
advanced representation for the ODE solution at each time point, the Taylor model. The discussion of
this section is not wasted however since a Taylor model also includes an interval component.

4 Taylor model arithmetic
Taylor models were first introduced by Makino and Berz [14, 15] in order to address both the dependency
problem and the wrapping effect in the bounding of function ranges. A Taylor model representation of a
function consists of a Taylor polynomial of some given degree and an interval remainder bound.

Specifically, let f (p) : P→ R be a function on some interval vector P ⊆ Rk. Let p0 ∈ P and q f :
Rk → R be an rth-degree k-variate polynomial in the variables (pi− p0

i ) for 1 ≤ i ≤ k. Furthermore let



R f be an interval. Then Tf := q f +R f is an rth-degree Taylor model of f on P about p0 if:

f (p) ∈ Tf (p) = q f (p−p0)+R f

for all p ∈ P. Taylor models of functions may be computed very naturally by using Taylor’s theorem
to truncate Taylor expansions and bound the remainder interval. Starting from existing Taylor models
Tf = q f +R f and Tg = qg +Rg on P about p0 of f and g, respectively, we may construct Taylor models
for combinations of these functions by employing Taylor model arithmetic [14]. For example, we have:

f ±g ∈ Tf±g := Tf ±Tg := (q f ±qg)+(R f ±Rg)

where arithmetic on intervals is performed as in the previous section. In the case of the product f × g,
we have:

f ×g ∈ q f ×qg +q f ×Rg +qg×R f +R f ×Rg

Note that q f ×qg is a polynomial of degree 2r. We do not wish for Taylor models to grow exponentially
in size with the number of multiplications performed on them or they will not remain a compact and
efficient representation for very long. For this reason we split q f × qg =: q f×g + qe where q f×g are the
parts of q f ×qg of degree r and below and qe contains the terms of degree higher than r. For the Taylor
model of f × g, we will take q f×g as the polynomial component and absorb the polynomial qe into the
remainder bound along with the terms q f ×Rg, qg×R f and R f ×Rg. Specifically, we define:

f ×g ∈ Tf×g := Tf ×Tg := q f×g +(R(qe)+R(q f )×Rg +R(qg)×R f +R f ×Rg)

where the function R(q) takes a polynomial q and returns an interval enclosing its range on P.
There are many methods described in the literature to compute R(q) [17]. In fact, the exact range

is itself an interval but computing it is NP hard [17] so various overestimating procedures are usually
employed. Most approaches focus on exact bounding of the first- and second-degree parts of q and
then bound the rest directly by substituting in P and performing interval arithmetic. In fact, even exact
bounding of a degree two polynomial can be very expensive. For this reason, we adopt the compromise
approach given by Lin and Stadtherr [12], in which only the first-degree and diagonal second-degree
terms are bounded exactly. That is, we compute:

R(q) :=
k

∑
i=1

[
ai

(
Pi− p0

i +
bi

2ai

)2

− b2
i

4ai

]
+R

where the first-degree and diagonal second-degree terms of q are ∑
k
i=1
(
ai(pi− p0

i )
2 +bi(pi− p0

i )
)

and
R is the interval obtained by evaluating all of the other terms directly using interval arithmetic.1 For a
Taylor model T = q+R, by R(T ) we mean R(q)+R, that is, an interval including the entire range of the
Taylor model.

The key benefit of Taylor models over plain interval methods are that, wherever possible, compu-
tations are performed symbolically in terms of the parameter variable p. In this manner, we alleviate
greatly both the dependency problem and the wrapping effect. We defer only to the interval remainder
bound to ‘mop up’ the higher-degree (and thus hopefully less significant) parts of the Taylor model as
the computation proceeds.

We return now to the central problem of this paper, the efficient computation of the bounds ỹL(t j,P)
and ỹH(t j,P) of Eq. (2). Our approach will be a fairly straightforward recursive application of Taylor

1For numerical reasons, if |ai|< ε for some small positive ε we evaluate the whole of q directly using interval arithmetic.
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Figure 1: State representation of the behaviour of a single node in the software update process model.

model arithmetic. Specifically, for each time point t j, we will construct a Taylor model Tỹ(t j) of ỹ(t j,p)
on P about the (component-wise) midpoint p0 := m(P).2 Given a Taylor model Tỹ(t j−1) of ỹ(t j−1,p) for
j > 0, a Taylor model Tỹ(t j) of ỹ(t j,p) can be computed according to the rules of Taylor model arithmetic
directly from Eq. (1). An initial Taylor model of ỹ(t0,p) is given by computing one of g(p). The bounds
we seek are then obtained by computing the interval range R(Tỹ(t j)) of Tỹ(t j) at each time point t j. In the
next section we illustrate this procedure and the resulting bounds explicitly for the fluid approximation
ODEs derived from a simple Markovian model.

5 Taylor-model derived bounds for a peer-to-peer software update model
We consider a very simple continuous-time Markov chain (CTMC) model of a peer-to-peer software
update process. There are two general classes of nodes in this system which we term old and updated.
Old nodes are those running an old software version and new nodes are those which have been updated
to a new version. Both types of nodes switch between being on and off (at rates λ and ρ , respectively).
When an updated node is on, an old node may locate it and subsequently update itself in a peer-to-peer
fashion. Whenever an old node comes on, it polls the network for new nodes (so it can be updated)
before giving up if it does not find one after an exponential delay at rate γ . Updated nodes have two
states which are just on and off, which we write as u and v, respectively. Old nodes have three states:
on (y), off (x) and a state representing an old node which is on but has given up seeking updates (z). We
follow a usual methodology for the stochastic modelling of epidemics in that the chance of an old node
finding an updated one in a small period of time is βu

N , where N is the total component population and
u is the number of nodes in state u, that is, the rate is proportional to the number of available updated
nodes. The transitions are given in Figure 1.

Let xt be the number of nodes in state x at time t, rescaled by N, and similarly for the other states.
Then St = (xt ,yt ,zt ,ut ,vt)

T is the rescaled discrete aggregated state vector. We will write the correspond-
ing continuous fluid approximation as (x(t),y(t),z(t),u(t),v(t))T given in the usual [e.g. 8] manner by
the system of ODEs:

ẋ(t) = −λx(t)+ρz(t)+ρy(t)
ẏ(t) = −βy(t)u(t)−ρy(t)− γy(t)+λx(t)
ż(t) = −ρz(t)+ γy(t)
u̇(t) = −ρu(t)+λv(t)+βy(t)u(t)
v̇(t) = −λv(t)+ρu(t)

2Vectors of Taylor models are handled simply in a component-wise fashion.
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(b) Γ = 0.6+[−0.3,0.3]

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Time, t

Pr
ob

ab
ili

ty

(c) Γ = 0.6+[−0.35,0.35]

Figure 2: Taylor-model computed bounds for the cumulative distribution function of the time for an old node to become updated in the software
update model. Also shown are ‘actual’ bounds computed by discretising the parameter range with a very small step.

In this section, we keep things simple by considering a univariate Taylor model, that is, on a single pa-
rameter. The parameter we will consider varying is γ . Write then (x̃(t j,γ), ỹ(t j,γ), z̃(t j,γ), ũ(t j,γ), ṽ(t j,γ))T

for the Euler numerical integration of these ODEs (according to Eq. (1)) over some sequence of time steps
t j = jh, for a variable value of γ , fixed initial condition (0.9,0,0,0,0.1)T and fixed values of the other
parameters: λ = 0.2, β = 2.0 and ρ = 0.1. Let Γ be an interval range of interest for the model parameter
γ , then we may compute the vector of Taylor models (Tx̃(t j),Tỹ(t j),Tz̃(t j),Tũ(t j),Tṽ(t j))

T about γ0 := m(Γ)

according to the last section. Specifically, given for example (Tx̃(t j−1),Tỹ(t j−1),Tz̃(t j−1),Tũ(t j−1),Tṽ(t j−1))
T for

j > 0, we can compute:

Tỹ(t j) = Tỹ(t j−1)+h
(
−βTỹ(t j−1)×Tũ(t j−1)−ρTỹ(t j−1)−TγTỹ(t j−1)+λTx̃(t j−1)

)
(3)

and similarly for the other components, where Tγ := γ0 +(γ − γ0) is the Taylor model of the variable
γ . In fact, this computation is actually somewhat naı̈ve and can exhibit rapid growth in the remainder
interval, thus causing the resulting range bound to blow up after only a small period of time. Indeed,
since the width of an interval sum is equal to the sum of the widths of the intervals, it is clear from the
form of Eq. (4) that the width of the interval remainder bound in the Taylor model is non-decreasing
with j. In cases where the ODE solutions contract, we would hope that the remainder bound might also
be able to contract. Rewriting the update rule by collecting terms as follows (and similarly for the other
components) yields:

Tỹ(t j) = Tỹ(t j−1)×
(

1+h(−βTũ(t j−1)−ρ−Tγ)
)
+hλTx̃(t j−1) (4)

This improves the situation massively. In particular, it is clear that it is now theoretically possible for the
interval remainder bound to shrink as the integration progresses. This issue is also directly related to the
way in which rearranging the order of interval computations can significantly improve the tightness of
the resulting interval, as discussed earlier.

Figures 2 and 3 give the results of applying this scheme to compute bounds on the fluid approximation
of the cumulative distribution function of the time for an old node to become updated in the software
update model, that is, the quantity ũ(t,γ)+ṽ(t,γ)−0.1

0.9 . We consider different parameter ranges for γ ∈ Γ,
different degrees r for the Taylor models and use a step size for the numerical integration of h = 0.5.

We observe that for both large parameter and time ranges, we can obtain impressively tight Taylor-
model derived bounds for relatively small degree of Taylor polynomial. We believe that we may be
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Figure 3: Taylor-model computed bounds for the cumulative distribution function of the time for an old node to become updated in the software
update model over a larger time range. Also shown are ‘actual’ bounds computed by discretising the parameter range with a very small step.

able to significantly reduce the degree of polynomial required to maintain tight bounds for time ranges of
interest by considering alternative representations for the remainder bound. Specifically, in the context of
verified numerical integration, Lin and Stadtherr [12] define a new type of Taylor model, which, instead
of an interval remainder bound, uses a parallelepiped representation for the remainder. This extension
is analogous to the parallelepiped techniques mentioned earlier for purely interval-based techniques.
As long as the degree of Taylor polynomial remains reasonably small (as in the cases considered in
this paper), this approach is extremely efficient and not a lot more expensive than a single numerical
integration.

Bounds computed by Taylor model techniques can form the basis of verified branch and bound
global optimisation algorithms [22]. We intend to develop similar global optimisation algorithms in our
non-verified context. These could be used, for example, to determine, in an efficient manner, optimal
parameters minimising some reward function (such as energy consumption) subject to the satisfaction of
a given service level agreement.

Finally, we hope to integrate the kind of techniques described in this paper in our Grouped PEPA
Analyser (GPA) [25] tool, making use of the efficient implementation of Taylor model arithmetic pro-
vided by the COSY Infinity [18] software package.

6 Conclusion

In this paper, we have shown that Taylor-model techniques taken from the field of verified numerical
integration can be used to compute bounds efficiently on the numerical solution of systems of ODEs over
large parameter ranges. For Markovian performance models which are amenable to ODE-based fluid
approximation, these techniques are directly useful for sensitivity analysis or for coping with uncertainty
in parameters. Furthermore, they are intended to form the future basis of efficient global optimisation
algorithms for stochastic models amenable to fluid approximation.
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