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Abstract
In this paper we present Open Battery, a tool for collecting data on mobile phone battery usage,
describe the data we have collected so far and make some observations. We then introduce the
fluid queue model which we hope may prove a useful tool in future work to describe mobile phone
battery traces.
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1 Introduction and motivation

A recent Forrester study suggests that by 2016 a billion smartphones will be in use around
the world [2]. Understanding battery behaviour and how devices are used (sometimes called
human battery interaction [7]) is important to deliver improved performance in these devices.

Previous studies (e.g. Ferreira et al. [3]) have collected data under privacy agreements
which do not allow the data to be shared outside the named researchers on the original
proposal. This makes further work with the data hard. Data collected in our study is
published under the PDDL on our website http://www.openbattery.com/, is in the public
domain, and can be downloaded and redistributed freely.

In this paper we will make some observations about the data we have collected so far and
then introduce the fluid queue modelling paradigm.

The authors of this paper previously published a result on how battery life of a device
subject to random charging and discharging periods was affected by a power saving mode,
implemented when power reserves fell below some threshold value [5]. In future work we
intend to investigate fitting this model to our data.

2 Data collection

We have written an application for Android which logs battery usage data. The application
listens for ACTION_BATTERY_CHANGED broadcasts and logs the battery state with timestamp
each time the battery state changes. Data is saved locally and sent to our web server when
the device is charging. A sample of the data collected is shown in Figure 1.

So far in this preliminary work, we have collected data for around 20 handsets for 3
months.

3 Observations on collected data

1. There is great variability in the number of data points logged. We observed a Samsung
GT-I9000 handset logging more than 1,000 data points a day (reporting regular small
changes in voltage), while a HTC Wildfire S A510e logged nearer 100 data points a day.
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Figure 1 Sample data trace from July 1-7 2012 for device id 3fd6231afc7fec60, a Galaxy Nexus.
Throughout this trace the reported health was GOOD.
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Figure 2 Linear charging/discharging period for Galaxy Nexus (device id 3fd6231afc7fec60,
8–9 July 2012).
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Figure 3 Non-linear charging for Nexus S (device id 3fe0f99cef3a49a8, 11-12 July 2012) with
two piecewise linear functions fitted.
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Figure 4 Erroneously reported discharging for asus Transformer Prime TF201 (device id
3fcb2812d3d9e9b8, 9-10 July 2012). From 19:00 to 23:20 the battery level was reported in the
operating system as at a constant value.
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HEALTH ∈ {UNKNOWN, GOOD, OVERHEAT, DEAD, OVER_VOLTAGE, UNSPECIFIED_FAILURE, COLD}.
PLUGGED ∈ {powered by battery, PLUGGED_AC, PLUGGED_USB}
STATUS ∈ {UNKNOWN, CHARGING, DISCHARGING, NOT_CHARGING, FULL}

Figure 5 BatteryManager health, plugged and status values.

State Average change Average filling/emptying time
AC charging +30 pp/hour 3 hours 15 minutes to fully charge
USB charging +20 pp/hour 5 hours to fully charge
discharging −3 pp/hour 33 hours until fully drained
Table 1 Average values computed for Galaxy Nexus

2. Generally reported charging rates are reasonably linear throughout the charging period
such as for the Galaxy Nexus shown in Figure 2. However, data recorded for five Nexus
S handsets shows linear charging up to 85%, with a non-linear portion up to 100%.
As shown in Figure 3 we could reasonably approximate this with a second linear rate.
Unsurprisingly we have less data for the lower end of battery charging (an earlier version
of the logging application required manual restart), but are now aware that charging
rates need to be level dependent.

3. There are also logging problems with data we need to consider. An ASUS Transformer
Prime TF201 (device id 3fcb2812d3d9e9b8) has misreported the battery level as remain-
ing constant for a few hours before dropping 50 percentage points or more in a matter of
seconds as shown in Figure 4. This is not a bug with our tool, but with the levels that
the battery hardware is reporting to the operating system.

4. Different handsets report their charging state differently. The values documented in the
BatteryManager class are shown in Figure 5, but not all handsets report in the same
way. For example, the HTC Wildfire (device id 3fe37029cced541a) never reports itself
DISCHARGING, only CHARGING, NOT_CHARGING or FULL.

4 Fluid queues

Fluid queues are a particular type of stochastic process which we hope will prove to be a
good model for the charging and discharging behaviour seen in our data.

A fluid queue is a bivariate stochastic process (Jt, Xt) where Jt describes the background
state and Xt the charge level. Jt is a Markov chain on the state space

{AC charging, USB charging, discharging}.

With each of these states we associate a rate of change which determines the rate at
which Xt changes. In Table 1 we show parameters estimated from a 4 month trace from
a Galaxy Nexus (device id 3fd6231afc7fec60). Average charging rates for this device are
broadly similar over all time periods, but average discharging rates varied significantly from
1 to 11 percentage points per hour (pp/hour).

A single exponential distribution holding time in each state is unlikely to describe the
traces well, but extra states can be added within the fluid queue model to give a phase-type
distribution fit to our data.

The process Xt is continuous and piecewise linear with the rate determined by the process
Jt. The process is bounded above and below by the capacity of the battery (0 ≤ Xt ≤ B for
all t).
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Figure 6 Sample trace from a fluid queue. The grey highlights represent time in charging periods
and the white background periods when the device was discharging.

A sample trace from a fluid queue model with just two states {charging, discharging}
is shown in Figure 6.

The busy period of the fluid queue is the time period between instants when the buffer is
empty. The busy period is a stochastic quantity because it is determined by the sequence of
charging and discharging period durations.

The fluid queue model has seen significant attention in the literature and the stationary
distribution and busy period are known for infinite buffer models [4]. We will require an
extension of the model introduced here where charging/discharging rates are dependent on
the charge level and the buffer is of finite capacity.

Authors of this paper published the busy period for a model with level-dependent rates
in a recent paper [5]. The Laplace–Stieltjes transform of the busy period distribution was
computed, from which moments can be computed analyically by differentiation and numerical
inversion can quickly compute particular values (e.g. 95th percentile). Extending this result
to a finite buffer with numerous emptying states remains as future work.

5 Motivation and future goals

Smart phone user feedback on battery life is currently very crude. Android handsets typically
warn the user of low battery at 15% and 5%, irrespective of how long the battery life is likely
to last (on some handsets this might be 8 or more hours).

Some apps already exist to give users a clearer idea of how long their battery will last
(like Battery Monitor Widget [1]), though they do not offer the user time-based alerts. A
significanlty more elaborate system ‘CABMAN’ has been suggested [8] where the device
would make decisions about power usage based on user position and proximity to the next
charging session.

Our theoretical model may be can be improved by considering the ‘phantom recharging’
effects descibed by the KiBaM model [5, 6]. We see voltage recoveries during discharge
periods in our collected data and intend to investigate the effect.

In the longer term we seek to investigate how the same device performs over time and
between different users and quantitatively qualify the degradation in battery performance
over time. This information will be of interest to both users and manufacturers of Android
devices.
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