
QAPL 2007

PEPA Queues: Capturing customer behaviour in queueing
networks

Ashok Argent-Katwala Jeremy T. Bradley1

Department of Computing
Imperial College London
London, United Kingdom

Abstract

Queueing network formalisms are very good at describing the spatial movement of customers, but typically poor at describing how customers
change as they move through the network. We present the PEPA Queues formalism, which uses the popular stochastic process algebra PEPA to
represent the individual state and behaviour of customers and servers. We offer a formal semantics for PEPA Queues, plus a direct translation to
PEPA, allowing access to the existing tools for analysing PEPA models. Finally, we use theipc/DNAmaca tool-chain to provide passage-time
analysis of a dual Web server example.

Keywords: Stochastic process algebra, PEPA, Queueing networks

1 Introduction

Queueing theory is a well-established discipline, good at describing and analysing quantitatively many
complex systems. There are well-known classes of queueing networks which have tractable solutions and
many modellers find them a natural modelling formalism to capture resource contention and buffering.

However, while queueing networks are very good at representing the broad structure of a system, they
are typically weak at describing the evolution of the individual customers within the network. Indeed,
it is quite common to treat all customers as opaque, indistinguishable entities. These customers have no
individual internal behaviour but may be segregated into a small set of static classes, when needed.

PEPA Queues [2] augment ordinary queueing networks by allowing customers to have individual
behaviour. In this formalism, we use a stochastic process algebra, PEPA, to represent the local behaviour
of the customers, the service centres and how they interact. Simple mechanisms from queueing theory
describe the migration of customers between queues.

The PEPA Queues formalism is presented with an automatic translation directly into PEPA, giving access
to the broad spectrum of existing tools available to analyse systems modelled in PEPA [9,6,12,3].

1 Email:{ashok,jb }@doc.ic.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Argent-Katwala and Bradley

In Sect.2 we introduce PEPA and PEPA nets. Sect.3 gives an overview of what PEPA Queues can do,
and how we can model some common mechanisms from queueing theory. Sect.4 defines the syntax
and behaviour of PEPA Queues, with a short example followed by the formal semantics. In Sect.5, we
show how we convert a system of PEPA Queues into an equivalent PEPA model. We show the benefit of
maintaining spatial separation and local behaviour using PEPA Queues by modelling a dual Web server
on an intranet in Sect.6. We discuss future work and conclude in Sect.7.

2 Background

2.1 PEPA

PEPA [11] is a parsimonious stochastic process algebra that can describe compositional stochastic mod-
els. As in all process algebras, systems are represented in PEPA as the composition ofcomponentswhich
undertakeactions. In PEPA the actions are assumed to have a duration, or delay. Thus the expression
(α, r).P denotes a component which can undertake anα action at rater to evolve into a componentP .
Hereα ∈ A whereA is the set of action types andP ∈ C whereC is the set of component types. The
rater represents the parameter of an exponential distribution, and the duration is assumed to be a random
variable.

PEPA has a small set of combinators, allowing system descriptions to be built up as the concurrent execu-
tion and interaction of simple sequential components. The syntax of the type of PEPA model considered
in this paper may be formally specified using the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ¤¢
L

P | P/L | C
whereS denotes asequential componentandP denotes amodel componentwhich executes in parallel.
C stands for a constant which denotes either a sequential component or a model component as introduced
by a definition.CS stands for constants which denote sequential components. The effect of this syntactic
separation between these types of constants is to constrain legal PEPA components to be cooperations of
sequential processes.

More information including the structured operational semantics for PEPA can be found in [11]. A brief
discussion of the basic PEPA operators is given below:

Prefix The basic mechanism for describing the behaviour of a system with a PEPA model is to give a
component a designated first action using the prefix combinator, denoted by a full stop. As explained
above,(α, r).P carries out anα action with rater, and it subsequently behaves asP .

Choice The componentP +Q represents a system which may behave either asP or asQ. The activities
of both P andQ are enabled. The first activity to complete distinguishes one of them: the other is
discarded. The system will behave as the derivative resulting from the evolution of the chosen compo-
nent.

Constant It is convenient to be able to assign names to patterns of behaviour associated with compo-
nents. Constants are components whose meaning is given by a defining equation. The notation for
this is X

def= E. The nameX is in scope in the expression on the right hand side meaning that, for
example,X

def= (α, r).X performsα at rater forever.

2

Argent-Katwala and Bradley

Hiding The possibility to abstract away some aspects of a component’s behaviour is provided by the
hiding operator, denotedP/L. Here, the setL identifies those activities which are to be considered
internal or private to the component and which will appear as the distinguished unknown typeτ .

Cooperation We writeP ¤¢
L

Q to denote cooperation betweenP andQ overL. The set which is used
as the subscript to the cooperation symbol, thecooperation setL, determines those activities on which
the components are forced to synchronise. The setL cannot contain the unknown typeτ . For action
types not inL, the components proceed independently and concurrently with their enabled activities.
We writeP ‖ Q as an abbreviation forP ¤¢

L
Q whenL is empty.

In process cooperation, if a component enables an activity whose action type is in the cooperation set it
will not be able to proceed with that activity until the other component also enables an activity of that
type. The two components then proceed together to complete theshared activitywith an appropriate rate.
The capacity of a componentP to perform an actionα is denotedrα(P), and is termed theapparent
rate. PEPA respects the definition ofbounded capacity: that is, a component cannot be made to perform
an activity faster by cooperation, so the apparent rate of a shared activity in a cooperation is the minimum
of the apparent rates of the activity in the cooperating components.

2.2 PEPA nets

A PEPA net [10] embeds PEPA components within a Petri net, allowing components to cooperate only
when they are together on the net. This allows a clear description of systems where different pieces are
mobile and move, for example, in and out of an area with network connectivity.

PEPA nets are essentially coloured stochastic Petri nets [1], where the colour of a token is the state of
a PEPA component. This state can change as the system evolves either independently, or in cooperation
with their neighbouring components. The places on the net are typed with a component name; they may
only be occupied by components that are derivatives of that type. Net-level transitions have associated
action-types and rates. Components move in the net when a mobile component performs a net-level
transition action, in cooperation with the net itself, to move into an appropriately typed empty slot.

PEPA nets are a good example of a higher level formalism. As well as having their own explicit semantics,
they may also be compiled into PEPA, and so analysed with the existing array of PEPA tools. This inspires
our approach for PEPA Queues, where we embed PEPA components in a queueing network, rather than
a Petri net.

Just as PEPA nets bring the spatial advantages of Petri nets to stochastic modelling, so PEPA Queues offer
similar advantages for queueing modellers. Both formalisms allow the expression of greater behavioural
control over the tokens or customers.

3 Overview

When building a customer-oriented model of a queueing system in PEPA, it is often tempting to muddle
the queueing behaviour with the descriptions of the individual agents. Where we have complex, migrant
customers the elegance of the simple cooperations can be obscured by the scaffolding of where each
customer is at present.

PEPA Queues encourage the modeller to keep local behaviour and movement separate by representing

3

Argent-Katwala and Bradley

the system as a network of queues, each of which has a local component, cooperating with the component
at the head of the queue.

Note that the state of a PEPA Queue is given by the current state of each of the components waiting in
the queue, in order, and the state of the local component. This cannot typically be represented by a vector
of buffer occupancies, as would be the case with typical, opaque customers. It is instead akin to having a
multi-class queueing network where the class does not influence the queueing discipline.

For example, consider the single PEPA Queue in Fig.1. It has four places in its input buffer, the local
component isQ and it cooperates with the head of the queue over the set of actionsL. Thestateof the
queue can be given as[P, P ′, P, P ′′], whereP ′′ is at the head of the queue. For the moment, we are not
concerned with the precise definitions ofP , P ′, P ′′ andQ, they are ordinary PEPA components. On
service, the next customer in the buffer is promoted to replace the served customer.

QP’’PP’P
L

Fig. 1.A single PEPA Queue

For simplicity, we restrict ourselves to closed networks of single-server queues using first-come first-
served discipline. The queues all have fixed-size, finite buffers and the network therefore has a fixed
and finite population of customers. There are no losses when destination queues are full; queue services
that lead to full queues are blocked. Handling open networks, unbounded buffers, triggers and negative
customers is desirable, but the translation into PEPA of these entities is less straightforward. Here we
focus on a simple core, which we can build upon in the future.

There are three distinct layers to a PEPA Queues model:

Customers PEPA components represent each individual customer. A customer may evolve internally,
or in cooperation with the queue component when it is in service. It may not perform actions in the
queue’s cooperation set unless it is in service.

Queues Each queue has a local server component which cooperates with the customer in service, over
a declared set of actions. By performing routing actions, it determines when customers are despatched
and to which queue they are sent. It may also cooperate with the local components at other queues,
based on the cooperations defined in the queueing system equation.

Network routing We use PEPA cooperation to decide where components go after being served. Cus-
tomers may only move to a particular destination queue if there is an open slot in that queue’s buffer,
and the cooperation of the queue and the customer it is serving offer that routing action.

SservePeggsPmilk

{milk,eggs,pay}

Still--
(send,T)

(repeat,T)

(redo,T)

{milk,eggs,pay}

PmilkPeggs

Fig. 2.A small dairy shop, modelled with two PEPA Queues. Queue A comprises the four slot buffer andSserve and queue B the two slot buffer
andStill.

4

Argent-Katwala and Bradley

The formal syntax for a network of PEPA Queues is given in Sect.4.1, and the structural operational
semantics follow in Sect.4.3. First, however, we look at a short example.

3.1 Example: Dairy shop

A system with two queues, A and B, as depicted in Fig.2. Pmilk andPeggs are customers who wish to
buy milk and eggs respectively.Sserve andStill are the server components that hand out goods and take
payment. The dashes represent empty slots in B’s buffer.

First, we examine the PEPA components that inhabit the network. ThePmilk andPeggs components are
customers who begin waiting in queue A; each is trying to purchase a different product and pay. The
customers can do both actions all the time, and the proper sequence is ensured by how they proceed
around the network.

Peggs
def= (eggs,>).Peggs + (pay ,>).Peggs

Pmilk
def= (milk ,>).Pmilk + (pay ,>).Pmilk

The server components determine the routing of customers in the system. In the first queue the server may
be out of stock of the lead customer’s item, in which case all the customers must wait for it to become
available. This illustrates the interaction of having local state in the server and customer components.

Seggs
def= (eggs,>).Snoeggs + (expire, eeggs).Snoeggs

Snoeggs
def= (restockeggs, reggs).Seggs

Smilk
def= (milk ,>).Snomilk + (expire, emilk).Snomilk

Snomilk
def= (restockmilk , rmilk).Smilk

Swait
def= (eggs,>).Ssending + (milk ,>).Ssending

Ssending
def= (send ,

9r
10

).Swait + (redo,
r
10

).Swait

Sserve
def= (Seggs || Smilk) ¤¢

{milk,eggs} Swait

Still
def= (pay ,>).(process, p).(repeat , s).Still

It is only when these components perform the queue routing actions (send, redo andrepeat) that cus-
tomers move between queues. These actions may be blocked in three circumstances:

• there are no customers in the queue;

• the routing action is in the queue’s cooperation set and the customer in service is not currently offering
that action;

• there is no space in the queue the routing action would lead to. Where the same action out of a queue
leads to more than one queue, only the ones with space to move into are enabled, and PEPA’s compet-
itive choice will select which route we take.

5

Argent-Katwala and Bradley

Now, the queueing network itself. While the picture is useful, we also want a clear, textual form capturing
all of the information in the diagram. We need to define both the routing within the network and the state
of the individual queues with their buffers. In order to refer to the queues, we give them names. Queue
names are prefixed with “Q :”, which prevents a clash with any valid PEPA names, since colons are not
permitted in those. The pseudo-component prefixed with “QNet :” is the queueing system, describing
the initial state of each queue, their local cooperation set and the system-level cooperation.

Fig. 2 can be fully described by:

Q:A def= (redo,>) → Q:A + (send ,>) → Q:B

Q:B def= (repeat ,>) → Q:A

QNet:Sys def= (Q:A[Pmilk, Peggs,Peggs, Pmilk] ¤¢
{eggs,milk,pay}Sserve)

|| (Q:B[−,−] ¤¢
{eggs,milk,pay} Still)

This syntax is defined in Sect.4.1.

The first two lines of the specification define the destinations for customers when they are served. Services
take place when the server component – possibly in cooperation with the customer – performs any of
these routing actions. In this example, all the action names are distinct but a modeller may use competitive
choice to choose the destination instead.

We choose to use routing actions which are passive here, and have the server processes,Sserve andStill,
determine the rates. This is just a modelling choice, and you could have the queueing network determine
the rate, or use active-active synchronisation if that better fits the situation being modelled. If a routing
action is included in a queue’s cooperation set, then the customer in service also influences its routing –
the components may only perform the action together, just as with any PEPA cooperation. If they are not
in the cooperation, any routing actions the customer performs are purely internal, and do not change the
position of the customer within the queueing network.

Note that a properly formed network of PEPA Queues will not have any unresolved passive actions,
where a component offers an action passively, but without cooperating over that action. This is the same
restriction as in PEPA, but the modeller must also consider that customers move to places where the
cooperation set may be different.

The last line of the specification is the queueing system equation. The square brackets contain the state
of each queue’s buffer, with PEPA component names for customers or a dash representing an empty slot.

If a queue was simply a sink, it would be referred to in other queue routing equations, but not have one
of its own, since it has no outbound transitions. There should perhaps be a more elegant way to represent
this in the syntax.

For brevity in these descriptions, we also allowP ∗n and−∗n in the queue state description, to represent
n copies ofP andn spaces respectively. For mechanical simplicity later on, we allow the degenerate
constructs ofP ∗ 0 and− ∗ 0, which occupy no space in the queue’s buffer.

So, the queueing system equation above could be restated as:

QNet : Sys def= (Q:A[Pmilk,Peggs ∗ 2,Pmilk] ¤¢
{eggs,milk,pay} Sserve)

|| (Q:B[− ∗ 2] ¤¢
{eggs,milk,pay} Still)

6

Argent-Katwala and Bradley

Although we allow cooperations at the network level, they should be used with care. The intention is
to use the queueing network to separate local behaviour from spatial migration. Allowing network-level
interactions breaks this separation, but can be put to good use for inherently global actions like closing
down the whole system, and a variety of forms of reset. Typically we would have, as in the example
above, a straight parallel synchronisation between the queues.

3.2 Modelling features

PEPA Queues allow a succinct expression for many queueing mechanisms. For example, we could model
breakdown and repair in a network of PEPA Queues as follows, allowing individual servers to fail and be
repaired, or with a global reset if all the servers have failed. We omit the definition of the customers,P ,
for brevity.

S1
def= (reprocess, s1).S1 + (continue, s2).S1 + (break , rdown).S′1

S′1
def= (repair , rup).S1 + (allrepair , rreset).S1

S2
def= (route, s).S′2 + (break , sdown).S′2

S′2
def= (repair , sup).S2 + (allrepair , rreset).S2

S3
def= (route, s).S′3 + (break , sdown).S′3

S′3
def= (repair , sup).S3 + (allrepair , rreset).S3

Q:Pri def= (reprocess,>) 7→ Q:Pri + (continue,>) 7→ Q:Sec

Q:Sec def= (route,>) 7→ Q:Ter

Q:Ter def= (route,>) 7→ Q:Pri

QNet:Sys def= (Q:Pri[P, P] ¤¢∅ S1)

¤¢
{allrepair} (Q:Sec[−,−,−] ¤¢∅ S2)

¤¢
{allrepair} (Q:Ter[−,−,−] ¤¢∅ S3)

4 Defining PEPA Queues

4.1 Syntax

The syntax for PEPA Queues is in two parts: routing between queues and a queueing-system description
of the initial state of each queue. All of the components for customers and queue servers are specified in
PEPA.

Each queue in a system is given a distinct name, which may be used only once in the final queueing
system definition. Queue level routing is defined using an arrow combinator, addressing names of the
queues, which all have a “Q:” prefix.

7

Argent-Katwala and Bradley

QName::= Q : Name

QRoute::= QName
def= QTransList

QTransList::= QTrans| QTrans+ QTransList

QTrans::= (α, r) −→ QName

Our queueing system description uses thoseQ:X names to define the initial position of the customers in
each queue, the cooperation set they have with that queue and the cooperation set amongst the queues:

QSys ::= QNet : Name
def= QList

QList ::= QDef | QDef CoopSet QList

QDef ::= Q : Name[QCustNameList] CoopSet Name

CustNameList::= CustName| CustName, CustNameList

CustName ::= Name| − | Name∗ Num | − ∗ Num

CoopSet ::= ¤¢
ActNameList

| ||
ActNameList ::= Name| Name, ActNameList

4.2 Behaviour of PEPA Queues

Before defining the formal semantics of PEPA Queues, and describing their mechanical conversion to
PEPA, it is illuminating to consider how a network of PEPA Queues may evolve directly.

In any network of PEPA Queues, there are three sorts of transitions that can occur:

Local Any of the server or customer components may evolve independently, provided the action is not
in the cooperation set for that queue.

In-service cooperation The customer in service at a queue cooperates with the stationary component at
that queue. If this is a routing action, we treat it as below, otherwise it is treated as a local evolution of
both components, at the appropriate combined rate.

Network-level A server transition can cause a customer to move in the network. This happens whenever
a stationary component at a queue performs a service action. We move the customer that has been
served to the first open slot in the target queue – that is the empty position that is closest to service.
This ensures we never leave any blank spaces in a queue’s buffer.

Our aim with PEPA Queues is to give the modeller the expressive convenience of queueing models, while
retaining much of the simplicity and all of the well-foundedness of PEPA.

We do this by converting PEPA Queues into PEPA. Every PEPA Queue model can be mechanically
rewritten as a PEPA model with no change in its behaviour. Some of the structure of the original may
be obscured in the compiled PEPA model, so tools will typically prefer to work with the PEPA Queues
directly.

Translating to PEPA allows us to use a wide range of tools that already exist, as well as giving toolmakers

8

Argent-Katwala and Bradley

and modellers who may want to work directly with PEPA Queues a precise definition of exactly how they
behave.

Translating to PEPA is not the only way to analyse PEPA Queues. In future, we hope to also offer a
translation directly into PEPA nets, preserving much of the spatial structure, which will allow smart
PEPA nets tools to exploit spatial features in their analysis. If we create tools that handle PEPA Queues
while retaining their structure, then a translation in the other direction – from PEPA nets to PEPA Queues
– should be of use too. Further, tools that apply known queueing network results directly, in terms of the
PEPA Queues structure, will allow much faster solution of many problems. This is a rich source of future
work.

4.3 Semantics of PEPA Queues

Definition 4.1 The relation−→, operating over the set of component names.P
(a,r)−→ P′ means thatP

performs the actiona at rater and evolves intoP′. This is as defined in PEPA [11].

Definition 4.2 The relation7−→, operating over the set of named queues.Q:A
(a,r)7−→ Q:B means there is

a queue routing actiona at rater leading from queue A to queue B.

Definition 4.3 The relation 67−→, operating over the set of named queues.Q:A 6a7−→ is equivalent to

@Q:B[Q:A
(a,r)7−→ Q:B], that isa is not a routing action forQ:A.

Definition 4.4 rα(P) is the apparent rate function, as defined in [11].

Definition 4.5 r′α(A) is a secondary apparent rate function, for queue routing actions.α must be a rout-
ing action forQ:A andr′α(A) is the sum of the rates of all the enabledα-activities forQ:A in the present
state.

Now we can specify individually all the legal ways a network of PEPA Queues can evolve. Throughout,
each ellipsis signifies a (possibly empty) list of components that remains unchanged after the transition.
IN denotes the positive integers, so− ∗ n below means that there is at least one empty slot in the queue’s
buffer.

Customer alone
This rule governs a customer evolving independently, anywhere in the queue. Note that this only allows
actions that are not in the queue’s cooperation set. Customers that are not in service may not perform
those actions, and customers that are in service perform them via ruleLocal cooperation.

P
(α,λ)−→ P ′

Q:A[...,P,...] ¤¢
L

S
(α,λ)−→Q:A[...,P ′,...] ¤¢

L
S

α/∈L

Server alone
The server process may perform actions not in the queue cooperation set independently, no matter the
state of the buffer.

S
(α,λ)−→ S′

Q:A[...] ¤¢
L

S
(α,λ)−→Q:A[...] ¤¢

L
S′

α/∈L

9

Argent-Katwala and Bradley

Local cooperation
Only the head of the queue may cooperate with the server process for actions inL, and they must perform
them together.

P ¤¢
L

S
(α,λ)−→ P ′ ¤¢

L
S′ Q:A 6α7−→

Q:A[...,P] ¤¢
L

S
(α,λ)−→Q:A[...,P ′] ¤¢

L
S′

α∈L

Server routing 1
Declares that in order for a customer to move between queues, the server component at the first queue
must perform a routing action, leading to a queue which has at least one space. The moved customer
moves to the first empty slot. Wheren is the largest suchn to describe the blank spaces inQ : B.
Routing actions may not appear in the inter-queue cooperation set,LQ.

SA
(α,λ)−→ S′A Q:A

(α,λq)7−→ Q:B

(Q:A[...,P] ¤¢
LA

SA) ¤¢
LQ

(Q:B[−∗n,...] ¤¢
LB

SB)
(α,R)−→

(Q:A[−,...] ¤¢
LA

S′A) ¤¢
LQ

(Q:B[−∗(n−1),P,...] ¤¢
LB

SB)

α/∈LA, α/∈LQ, n>0, R as below

Server routing 2
As Server routing 1but where the routing action leads to the same queue. Note that we still need an
empty slot, to avoid unduly prioritising local routing. Otherwise, a customer could be allowed to move
to the back of the queue it has just left when arrivals from other queues are disallowed.

SA
(α,λ)−→ S′A Q:A

(α,λq)7−→ Q:A

(Q:A[−∗n,...,P] ¤¢
LA

SA)
(α,R)−→ (Q:A[−∗n,P,...] ¤¢

LA
S′A)

α/∈LA, n>0, R as below

Coop routing 1
For a routing action that is also in the queue’s cooperation set, the action must occur in cooperation
between the lead customer and the queue’s server. Again, routing actions may not appear in the inter-
queue cooperation set,LQ.

P ¤¢
LA

SA
(α,λ)−→ P ′ ¤¢

LA
S′A Q:A

(α,λq)7−→ Q:B

(Q:A[...,P] ¤¢
LA

SA) ¤¢
LQ

(Q:B[−∗n,...] ¤¢
LB

SB)
(α,R)−→

(Q:A[−,...] ¤¢
LA

S′A) ¤¢
LQ

(Q:B[−∗(n−1),P ′,...] ¤¢
LB

SB)

α∈LA, α/∈LQ, n>0, R as below

Coop routing 2
Just as forCoop routing 1, but routing to the same queue. As withServer routing 2we require an empty
slot in the queue.

P ¤¢
LA

SA
(α,λ)−→ P ′ ¤¢

LA
S′A Q:A

(α,λq)7−→ Q:A

Q:A[−∗n,...,P] ¤¢
LA

SA
(α,R)−→ Q:A[−∗n,P ′,...] ¤¢

LA
S′A

α∈LA, α∈LQ, n>0, R as below

For the last four rules:

R =
λ

rα(SA)
λq

r′α(A)
min(rα(SA), r′α(A)))

whereR represents the rate of active cooperation between the service component and the queueing

10

Argent-Katwala and Bradley

network. As in PEPA, it reflects the rate of the slower component in the cooperation.

Note that we do not allow cooperation between the queues for routing actions. If we did then we would be
including a potentially interesting class of synchronised, coupled queues but at the expense of a substan-
tially more complex translation. With our present translation, we use the names of the routing actions,
decorated with where they are occurring to provide us with global, unique names for each of the routing
actions. If we allowed cooperation at this level, we would need some other mechanism for migrating
components. It may be possible to extend still further the information we carry in the expanded action
names, but needing to represent which pair of processes is cooperating in the action name would lead
to a large explosion in the number of names used. We could conceivably use a synchronous immediate
action to achieve these coupled queues, but we would first need to define that concretely.

5 Translation to PEPA

We use a similar approach to that used to translate PEPA nets to PEPA, and encode the spatial portion
of the model by having dormant versions of every component that may occupy a given slot, and simply
activate them when, in the higher level model, that component arrives in that particular slot.

This is somewhat troublesome, since it leads to a large explosion in the number of components in the
system, and we typically create both a huge model, textually, and a very large state space. However, it
does mean that we can put to work existing tools for handling PEPA models, many of which can handle
very large state spaces, with limits that are constantly improving.

Since the slots in our buffers are not typed in any way, we need a definition for each component that may
occur, in every position it may occupy.

5.1 Translation detail

Any translation from PEPA Queues to PEPA will in general increase the number of component definitions
by a factor ofn(m + 1), in a system which hasn queueing positions andm customer states. We need
to distinguish between each of then queueing slots being empty or having any one of them customer
components in.

With a clever encoding, we may be able to save some of these – for example where a particular customer
could never reach part of the network. However, the cost of exploring the reachability, conditioned on the
actions it may perform as it traverses the network, will be too high for non-trivial networks.

The basic structure of the translated model is as follows:

(i) Each customer type is represented by many component definitions, one for each spatial state and
derivative customer component that the customer could reach. There is one spatial state for each of
the queueing positions.

(ii) The queueing transitions are split into a number of distinguishable action names, each leading to
a particular slot in a queue. We replace each routing action with a choice of several different, new
actions which encode the destination. All the new actions happen at the same rate as the original
and we then ensure that only one of them is active at once. When the same action is used to route
to different destinations, each is expanded in this manner, and we use PEPA’s competitive choice to

11

Argent-Katwala and Bradley

determine which route is used.

(iii) There is apopulation trackercomponent for each queue which tracks the number of customers at
that queue. The tracker component for a queueX with n slots would haven + 1 states,QXpop0 to
QXpopn . In each state it enables just the queue routing actions to ensure that customers are delivered
to the first available slot, and that no customers may join a full queue. To handle different queueing
disciplines we would alter the actions these components enabled.

Note that to be allowed to move, the destination slot must be empty. This means that when all four
customers are in queue A, theredo action is disabled, as even though there will be a free slot after the
lead customer moves, there is not one until then. If we allowed this form of movement it would give
preferential treatment to customers coming from the same queue.

The subscriptsXn on the routing actions indicate the current queue length at queueX, including any
customer in service. This means on being served by this action, a customer would be placed in queueX

in slotn + 1.

So, the population trackers for the two queues of Sect.3.1are:

QApop0
def= (repeatA0 ,>).QApop1

QApop1
def= (repeatA1 ,>).QApop2 + (redoA1 ,>).QApop1

+(sendB0 ,>).QApop0 + (sendB1 ,>).QApop0

QApop2
def= (repeatA2 ,>).QApop3 + (redoA2 ,>).QApop2

+(sendB0 ,>).QApop1 + (sendB1 ,>).QApop1

QApop3
def= (repeatA3 ,>).QApop4 + (redoA3 ,>).QApop3

+(sendB0 ,>).QApop2 + (sendB1 ,>).QApop2

QApop4
def= (sendB0 ,>).QApop3 + (sendB1 ,>).QApop3

QBpop0
def= (sendB0 ,>).QBpop1

QBpop1
def= (sendB1 ,>).QBpop2

+(repeatA0 ,>).QBpop0 + (repeatA1 ,>).QBpop0

+(repeatA2 ,>).QBpop0 + (repeatA3 ,>).QBpop0

QBpop2
def= (repeatA0 ,>).QBpop1 + (repeatA1 ,>).QBpop1

+(repeatA2 ,>).QBpop1 + (repeatA3 ,>).QBpop1

Now, our stationary queue components also need to cater for this expanded set of routing actions, so we
expand each of the routing actions to be a choice of all the new routing actions derived from that one.
Since we have ensured that only one of these variants will be enabled at the same time, we can offer these
extra choices without changing the effective rate of the group of actions.

We also rewrite the actions in the queues’ cooperation sets to be unique to that queue. Thus, when we
cooperate all these components together in a flat structure we preserve the spatial separation. Because
only one variant of a particular action is enabled at any time, we ensure that we do not artificially inflate
the rate of any particular action.

Each queue’s stationary component is translated separately here, denoted by superscripts of the queue
name. In this example this is not crucial, since the server components for each queue are different pro-

12

Argent-Katwala and Bradley

cesses, but we follow the convention nonetheless.

SA
eggs

def= (eggsA,>).SA
noeggs + (expire, eeggs).SA

noeggs

SA
noeggs

def= (restockeggs, reggs).SA
eggs

SA
milk

def= (milkA,>).SA
nomilk + (expire, emilk).SA

nomilk

SA
nomilk

def= (restockmilk , rmilk).SA
milk

SA
wait

def= (eggsA,>).SA
sending + (milkA,>).SA

sending

SA
sending

def= (sendB0 ,
9r
10

).SA
wait + (sendB1 ,

9r
10

).SA
wait

+(redoA0 ,
r
10

).SA
wait + (redoA1 ,

r
10

).SA
wait

+(redoA2 ,
r
10

).SA
wait + (redoA3 ,

r
10

).SA
wait

SA
serve

def= (SA
eggs || SA

milk) ¤¢
{milkA,eggsA}

SA
wait

SB
till

def= (payB ,>).SB
till0

SB
till0

def= (process, p).SB
till1

SB
till1

def= (repeatA0 , s).SB
till + (repeatA1 , s).SB

till +

(repeatA2 , s).SB
till + (repeatA3 , s).SB

till

Note that each occurrence of a routing action is expanded into a choice of all the variants of that action,
and that we have named the anonymous sub-components ofStill to facilitate this.

For each customer component or derivative, we clone the definitions for every buffer slot of every queue
in the network that it could possibly reach. For any position not at the head of a queue, we omit any
transitions that are in that queue’s cooperation set. In those positions, we add passive transitions for each
of the queue’s service actions, which leads to the corresponding component one slot further forward in
the queue.

Concretely, for our two-node example network, we make copiesPeggs andPmilk for all six slots of the
network. The original definitions were:

Peggs
def= (eggs, re).Peggs + (pay , pe).Peggs

Pmilk
def= (milk , rm).Pmilk + (pay , pm).Pmilk

For the six queueing positions, this becomes the following. The superscript A4 indicates the component
is fourth in the queue at A, including the customer in service. We also account for the queue routing by
passively enabling all the movement actions and take the customer to the appropriate state to mimic the
new spatial location. Our automated translation allows some impossible movements here (for example
a customer at positionA2 allows the routing action forA0). This is not a concern, since the population
trackers will never enable these actions.

PA1
eggs

def= (eggsA, re).PA1
eggs + (payA, pe).PA1

eggs + (sendB0 ,>).PB1
eggs

13

Argent-Katwala and Bradley

+(redoA1 ,>).PA2
eggs + (redoA2 ,>).PA3

eggs + (redoA3 ,>).PA4
eggs

PA2
eggs

def= (eggsA, re).PA2
eggs + (payA, pe).PA2

eggs + (sendB0 ,>).PB1
eggs

+(redoA1 ,>).PA2
eggs + (redoA2 ,>).PA3

eggs + (redoA3 ,>).PA4
eggs

PA3
eggs

def= (eggsA, re).PA3
eggs + (payA, pe).PA3

eggs + (sendB0 ,>).PB1
eggs

+(redoA1 ,>).PA2
eggs + (redoA2 ,>).PA3

eggs + (redoA3 ,>).PA4
eggs

PA4
eggs

def= (eggsA, re).PA4
eggs + (payA, pe).PA4

eggs + (sendB0 ,>).PB1
eggs +

(redoA1 ,>).PA2
eggs + (redoA2 ,>).PA3

eggs + (redoA3 ,>).PA4
eggs

PB1
eggs

def= (eggsB , re).PB1
eggs + (payB , pe).PB1

eggs + (repeatA0 ,>).PA1
eggs

+(repeatA1 ,>).PA2
eggs + (repeatA2 ,>).PA3

eggs + (repeatA3 ,>).PA4
eggs

PB2
eggs

def= (eggsB , re).PB2
eggs + (payB , pe).PB2

eggs + (repeatA0 ,>).PA1
eggs

+(repeatA1 ,>).PA2
eggs + (repeatA2 ,>).PA3

eggs + (repeatA3 ,>).PA4
eggs

PA1
milk

def= (milkA, rm).PA1
milk + (payA, pm).PA1

milk + (sendB0 ,>).PB1
milk

+(redoA1 ,>).PA2
milk + (redoA2 ,>).PA3

milk + (redoA3 ,>).PA4
milk

PA2
milk

def= (milkA, rm).PA2
milk + (payA, pm).PA2

milk + (sendB0 ,>).PB1
milk

+(redoA1 ,>).PA2
milk + (redoA2 ,>).PA3

milk + (redoA3 ,>).PA4
milk

PA3
milk

def= (milkA, rm).PA3
milk + (payA, pm).PA3

milk + (sendB0 ,>).PB1
milk

+(redoA1 ,>).PA2
milk + (redoA2 ,>).PA3

milk + (redoA3 ,>).PA4
milk

PA4
milk

def= (milkA, rm).PA4
milk + (payA, pm).PA4

milk + (sendB0 ,>).PB1
milk

+(redoA1 ,>).PA2
milk + (redoA2 ,>).PA3

milk + (redoA3 ,>).PA4
milk

PB1
milk

def= (milkA, rm).PB1
milk + (payA, pm).PB1

milk + (repeatA0 ,>).PA1
milk

+(repeatA1 ,>).PA2
milk + (repeatA2 ,>).PA3

milk + (repeatA3 ,>).PA4
milk

PB2
milk

def= (milkA, rm).PB2
milk + (payA, pm).PB2

milk + (repeatA0 ,>).PA1
milk

+(repeatA1 ,>).PA2
milk + (repeatA2 ,>).PA3

milk + (repeatA3 ,>).PA4
milk

We use two different cooperation sets:LR, with just the routing actions; andL with both the routing
actions, and the local cooperating actions for each queue:

LR = {repeatA0 , repeatA1 , repeatA2 , redoA0 , redoA1 , redoA2 , sendB0 , sendB1}
L = LR ∪ {eggsA,milkA, payA, eggsB ,milkB , payB}

We build the final system equation from three major components, representing the state of the queues
(QState), the migrant customers (Customers) and the stationary server components (Servers), respect-
ing the initial states of each.Customers reflects the initial placement of the customers, as in Fig.2.

QState def= QApop3 ¤¢
LR

QBpop0

Customers def= PA4
milk

¤¢
L

PA3
eggs

¤¢
L

PA2
eggs

¤¢
L

PA1
milk

Servers def= SA
serve || SB

till

14

Argent-Katwala and Bradley

Finally, we can write our system equation for the transformed model:

Sys def= QState ¤¢
L

Customers ¤¢
L

Servers

6 Worked Example

Consider a very simple model of a small intranet, with separate Web servers serving two clients, as
depicted in Fig.3. Each customer fetches a page from the first server with agetpage action, then goes to
the second server for some related resources (thegetimages action), before returning to the first server.

The serverSpage doles out pages and the serverSimages serves images. AfterSpage has issued agetpage,
it releases the client from the first queue,A, with thesend action, which routes the client on to the next
queue,B (only if there is room in the downstream buffer for that client). TheSimages server, after sending
images to the client, then does some internal processing before issuing arepeat action which routes the
client back to the first buffer again.

Clearly there is contention for the second buffer which can fill up and block client movement from the
first buffer. In the quantitative analysis below, where we generate passage-time distributions for the time
from agetpage action to arepeat action, we will see that increasing the rate of thegetpage action only
has a limited effect on the overall passage.

SpagePP
L

Simage-
L

(send,T)

(repeat,T)

Fig. 3.Two Web servers with two clients. The cooperation set,L = {getpage, getimages}

P def= (getpage, rgetpage).Pready

Pready
def= (getimages, rgetimages).P

Spage
def= (getpage,>).(send , rsend).Spage

Simages
def= (getimages,>).(process, rproc).(repeat , rrep).Simages

Q:A def= (send ,>) → Q:B

Q:B def= (repeat ,>) → Q:A

QNet:Sys def= (Q:A[P,P] ¤¢
L

Spage) || (Q:B[−] ¤¢
L

Simages)

whereL = {getpage, getimages}.
In Fig. 4, we measure the cumulative distribution function of the passage from agetpage action until
the nextrepeat using theipc/DNAmaca toolset [3]. In increasing the rate of thegetpage action, we see
some benefit at first,rgetpage = 0.01 to 1.0. However, when plotting the density function of the same
passage, we see that the time for the passage to complete also depends on the other rates and structures
in the system. To move from queueA to B a customer must wait for an empty slot at queueB, then a

15

Argent-Katwala and Bradley

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
, p

Time, t

r_getpage=1
r_getpage=0.5

r_getpage=0.01

Fig. 4. Passage-time cumulative distribution functions
from the first getpage action to the repeat action: for
rgetpage = 0.01,0.5,1.0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1 2 3 4 5 6

P
ro

ba
bi

lit
y

de
ns

ity

Time, t

r_getpage=100
r_getpage=1

r_getpage=0.01

Fig. 5. Passage-time density functions from the firstgetpage
action to therepeat action: forrgetpage = 0.01,1.0, 100

send action to route it there. The nextrepeat action will only occur once the customer has performed
thegetimages action and can then perform arepeat to return to the first server. Hence in Fig.5, we see
that in looking at the passage forrgetpage = 100, we see that we don’t get a monotone improvement
in probability of early passage completion as we see fromrgetpage = 0.01 to 1.0, but instead the extra
contention caused serves to worsen the overall passage metric.

7 Conclusions and Future Work

In this paper, we have introduced PEPA Queues, a formalism for expressing individual customer
behaviour and routing in queueing networks. Queueing customers are described in PEPA, as are individ-
ual servers in the network, with interactions between customers and servers deciding the exact routing
pathway for a customer. This synergy of a behavioural description and a spatial formalism is similar to
PEPA nets but is obviously tailored to situations where queueing models would be a more appropriate
spatial formalism.

We further presented an operational semantics for PEPA Queues in terms of an underlying PEPA model
and presented a worked example of a simple web server system. We finished by demonstrating passage-
time analysis across the worked example.

As described, PEPA Queues are restricted to closed networks of bounded queues, in keeping with PEPA’s
handling of finite state spaces. It would also be desirable to handle unbounded queues, which will require
further work to describe the semantics of the extended system.

The most appealing next step would be to exploit known queueing network properties directly, for certain
classes of PEPA Queue. By operating on a network of PEPA Queues directly, rather than in terms of their
translation into PEPA, we could exploit known results – for example, separability in queueing networks.
This is one of the appealing aspects of queueing networks, which can let us escape the typical state
space explosion we have with Markovian modelling in general. There are also popular queueing network
features which deserve further investigation:

Unbounded buffers and open networksHandling open networks with unbounded buffers could allow
us to apply many known theoretical queueing results to our models. For the translation we would need
to use a formalism that allows infinite, regular state spaces, for which there are existing extensions to
PEPA [2,4].

16

Argent-Katwala and Bradley

Sources and sinksIn a sense, these are just queues with unbounded buffers. However, if all our infinite
queues have either no inputs or no outputs, then there is still a straightforward translation to PEPA
which would follow the style of customer-centric models [5].

Inter-customer cooperation In some real-world systems, the customers may cooperate with one
another in the queue. This may be a reasonable way to represent negative customers [8]. These coopera-
tions could be just between neighbours or amongst all the customers awaiting service. Zero-automatic
queues [7], for example, allow neighbouring customers of a shared group of classes to interact and
coalesce into a single customer.

It would also be useful to offer translations into other formalisms where we can retain more of the
inherent structure. We are investigating a translation into PEPA nets, to be followed by other suitable
target systems.

We have introduced a basic syntax for defining networks of queues with embedded PEPA, together with
a description of how to rewrite those models into PEPA.

References

[1] Ajmone Marsan, M., G. Conte and G. Balbo,A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor
systems, ACM Transactions on Computer Systems2 (1984), pp. 93–122.

[2] Argent-Katwala, A., “A compositional, collaborative performance pipeline,” Ph.D. thesis, Imperial College, London, United Kingdom
(2006).

[3] Bradley, J. T., N. J. Dingle, S. T. Gilmore and W. J. Knottenbelt,Derivation of passage-time densities in PEPA models using ipc: the
Imperial PEPA Compiler, in: G. Kotsis, editor,MASCOTS’03, Proceedings of the 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems(2003), pp. 344–351.

[4] Clark, G., “Techniques for the Construction and Analysis of Algebraic Performance Models,” Ph.D. thesis, Department of Computer
Science, University of Edinburgh, Edinburgh EH9 3JZ, UK (1994).

[5] Clark, G. and J. Hillston,Product form solution for an insensitive stochastic process algebra structure, Performance Evaluation50 (2002),
pp. 129–151.

[6] Clark, G. and W. Sanders,Implementing a stochastic process algebra within the Möbius modeling framework, in: L. de Alfaro and
S. Gilmore, editors,Proc. of the 1st joint PAPM-PROBMIV Workshop, Lecture Notes in Computer Science2165(2001), pp. 200–215.

[7] Dao-Thi, T.-H. and J. Mairesse,Zero-automatic queues, in: M. Bravetti, L. Kloul and G. Zavattaro, editors,EPEW/WS-FM, Lecture Notes
in Computer Science3670(2005), pp. 64–78.

[8] E. Gelenbe, E.,Queuing networks with negative and positive customers, Journal of Applied Probability28 (1991), pp. 656–663.

[9] Gilmore, S. and J. Hillston,The PEPA workbench: A tool to support a process algebra-based approach to performance modelling, in:
G. Haring and G. Kotsis, editors,Proceedings of the 7th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, Lecture Notes in Computer Science794(1994), pp. 353–368.

[10] Gilmore, S., J. Hillston and M. Ribaudo,PEPA nets: A structured performance modelling formalism, in: A. Field et al., editor,Proceedings
of the 12th International Conference on Modelling Tools and Techniques for Computer and Communication System Performance
Evaluation, number 2324 in Lecture Notes in Computer Science (2002), pp. 111–130.

[11] Hillston, J., “A Compositional Approach to Performance Modelling,” Distinguished Dissertations in Computer Science12, Cambridge
University Press, 1996.

[12] Kwiatkowska, M. Z., G. Norman and D. Parker,Prism: Probabilistic symbolic model checker, in: A. Field et al., editor,TOOLS’02,
Proceedings of Computer Performance Evaluation: Modelling Techniques and Tools, Lecture Notes in Computer Science2324(2002).

17

