
Deriving Generalised Stochastic Petri Net Performance
Models from High-Precision Location Tracking Data

Nikolas Anastasiou
Department of Computing
Imperial College London

South Kensington Campus,
London SW7 2AZ

na405@doc.ic.ac.uk

Tzu-Ching Horng
Department of Computing
Imperial College London

South Kensington Campus,
London SW7 2AZ

th107@doc.ic.ac.uk

William Knottenbelt
Department of Computing
Imperial College London

South Kensington Campus,
London SW7 2AZ

wjk@doc.ic.ac.uk

ABSTRACT
Stochastic performance models have been widely used to
analyse the performance and reliability of systems that in-
volve the flow and processing of customers and/or resources
with multiple service centres. However, the quality of per-
formance analysis delivered by a model depends critically
on the degree to which the model accurately represents the
operations of the real system. This paper presents an auto-
mated technique which takes as input high-precision location
tracking data – potentially collected from a real life system –
and constructs a hierarchical Generalised Stochastic Petri
Net performance model of the underlying system. We ex-
amine our method’s effectiveness and accuracy through two
case studies based on synthetic location tracking data.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modelling techniques

Keywords
Location Tracking, Performance Modelling, Data Mining,
Generalised Stochastic Petri Nets

1. INTRODUCTION
We are surrounded by many complex physical systems that
process customers and goods, for example hospitals, airports
and car assembly lines. In such systems it is critical to un-
derstand the flow of customers and/or resources to ensure
that the system can be tuned to meet its Quality of Ser-
vice (QoS) requirements. For this reason, much time and
effort has been invested in performance modelling and anal-
ysis. The traditional performance modelling and analysis
pipeline consists of three stages: model construction, model
validation and system analysis. The most fundamental stage
of this pipeline is model construction as the accuracy of the
model is crucial to ensure the validity of subsequent anal-
ysis. To build an accurate model usually requires a large
amount of data. Current techniques, such as time and mo-

tion studies involve tedious manual tasks such as inspection
of video footage, questionnaires and manual collection of
timing data, all of which may be error-prone. This data-
gathering process is not only time consuming but, impor-
tantly, often disrupts the system’s natural flow.

Previous work on modelling patient flow in an Accident and
Emergency department by S. Au-Yeung [2] exemplified the
difficulties of manual model construction (particularly accu-
rate parameterisation) and validation. While there was good
agreement between mean response times emerging from both
the model and the data, the distributions of response times
were not well matched, and there was no straightforward
way to identify the causes of discrepancies.

The recent development of real time location tracking sys-
tems (RTLSs) enables the automatic and unobtrusive collec-
tion of large amounts of high-precision location data in real
time. These systems use a variety of technologies, such as
RFID (Radio Frequency Identification), UWB (Ultra Wide
Band) and Wi-Fi, and have been already deployed with the
goal of enhancing performance efficiency and system safety,
especially in the fields of supply chain management and
healthcare (e.g. [1, 18, 11, 17, 14]).

As shown in Figure 1, the aim of this research is to design
a methodology that automatically constructs a (stochastic)
Petri Net Performance Model (PNPM) [3] of physical agent
flow in a customer-processing system using location tracking
data as input. Since this is an extremely broad and challeng-
ing problem for customer-processing systems in general, for
the present we restrict ourselves to that class of systems hav-
ing a single class of customer, single-server service semantics
and random service discipline.

Our approach is based on the four-stage data processing
pipeline shown in Figure 2, which takes as input raw loca-
tion tracking data and outputs the PNPM in the portable
PNML [4] format. The first stage of the pipeline performs
some basic data filtering. The second stage infers the lo-
cation of each service area in the system as well as its as-
sociated service radius. The third stage creates the initial
structure of the PNPM with the required places and tran-
sitions. Samples of sojourn times in each service area and
samples of travelling times between each pair of service areas
are also extracted. The last part of this stage performs the
calculation of the initial routing probabilities of the customer

flow. In the final stage we fit a hyper-Erlang distribution to
each transition’s assigned set of samples using the G-FIT
tool [16] and refine the structure of the model accordingly.
The output of the fourth stage – the PNML file – can be pro-
cessed using a number of Petri net editors including PIPE2,
an open-source platform independent Petri Net editor [6].

The remainder of this paper first presents previous litera-
ture related to our work. Then we examine the four stages
of the developed processing pipeline in detail. Finally we
present two case studies to examine the accuracy and ef-
fectiveness of our approach. These use synthetic location
tracking data generated by a simulator (an extended version
of JINQS [10]). We conclude the paper with a summary of
the results and a discussion of future work.

2. RELATED WORK
A previous research endeavour in the field of automatic con-
struction of Generalised Stochastic Petri Net (GSPN) [15]
models has been made by Xue et al. [19]. It developed a
methodology that automatically constructs GSPN models
for flexible manufacturing systems (FMSs), which can re-
spond to changes in the environment in real time. Their
work included a software package, FMSPet, where an in-
put language called FMSDL was used to describe the phys-
ical system being modelled. However, their methodology is
application-specific and cannot be easily adapted to other
scenarios. Our work aims to provide a generic tool which
constructs accurate GSPN performance models representing
a wide range of physical systems.

Our work is mostly closely related to earlier work by Horng
et al. [12]. This work proposed a methodology for inferring
simple Queueing Network performance models from high-
precision location tracking data. The inferred Queueing Net-
work model encapsulates both the structure of the Queueing
Network, specified by customer-flow routing probabilities,
and customer interarrival time and service time distribu-
tions for each server. Different from Horng et al., this re-
search adopts Petri nets, instead of queueing networks, as
the modelling formalism. Furthermore, instead of assum-
ing knowledge of service areas and service radii, we adopt a
clustering algorithm to infer both the locations and radii of
service areas (assumed to be circular). Our chosen cluster-
ing algorithm is DBSCAN [8], a density-based algorithm for
discovering clusters in large spatial databases that contain
noise. Clusters are defined as connected regions with high
data density. If the data density of a region is less than a
predefined threshold then these data are considered as noise.
We apply DBSCAN on a set of 2D points extracted from fil-
tered location traces, to identify the clusters that represent
the service areas and approximate the locations of the ser-
vice points by calculating their centroids.

This research also incorporates G-FIT, a technique for ap-
proximating general non-zero distributions by fitting mix-
tures of Erlang distributions (that is, hyper-Erlang distri-
butions). Thümmler et al. extended the fitting procedure
of [13], which is based on the expectation-maximisation (EM)
algorithm. Similar to hyperexponential distributions, hyper-
Erlang distributions are analytically tractable and can be
easily used for numerical performance studies [13]; their
more constrained form also allows for an efficient fitting algo-

rithm [16]. However, compared to hyperexponential distri-
butions the classes of distributions representable by hyper-
Erlang distributions are extended significantly. Thümm-
ler used several case studies based on both synthetic data
and real traffic traces to demonstrate the effectiveness of
G-FIT in approximating empirical data, compared to the
other methods such as PhFit [5]. Other work in modelling
time variables (e.g. users’ cell residence time) in wireless net-
works and mobile computing systems has also demonstrated
the generality of hyper-Erlang models [9].

3. INFERRING PNPMS FROM
HIGH-PRECISION LOCATION
TRACKING DATA

3.1 Data Processing Pipeline
This section provides details of the automated four-stage
data processing pipeline shown in Figure 2. The input of
the pipeline is raw location tracking data and its output is
a GSPN model describing customer flow in the system. The
output of each stage serves as the input of the next one.

3.2 Stage 1
The first stage of the processing pipeline is responsible for
basic data filtering. Currently we support UWB-based loca-
tion tracking data generated by a Ubisense RTLS, as well as
synthetic location tracking data generated by an extended
version of JINQS.

A typical location update reading from an RTLS is of the
form (tagName, type, time, x, y, z, stderr). tagName
is a unique identifier for each agent in the system and type
indicates the category a tag belongs to. This category is
application specific and it can be used as an indicator for
further information regarding the particular tag. For exam-
ple, if we have multiple customer classes, type can be used to
denote the customer class of the particular tag. time is the
timestamp of each location update and x, y, z are the loca-
tion of the tag in a 3D Cartesian coordinate system. stderr
is the location tracking system’s estimate of the deviation
between the position measurement and the real location.

This stage also removes unnecessary information such as the
z-coordinate (we work in 2D) and erroneous location read-
ings that are outside the possibilities of the experimental
environment. The final structure of a location update is of
the form (tagName, type, time, x, y, stderr).

3.3 Stage 2
This stage consists of a three-layer technique which infers
the location and service radii of service areas in the system.
Here we assume that customers stop or slow down while re-
ceiving service; we can thus identify the regions where the
customer movement is relatively ‘slow’ as the likely service
areas. The three layers are: velocity filtering, density fil-
tering and the application of the DBSCAN clustering algo-
rithm [8] (see Figure 3).

In the following subsections we use the notion of the Eps-
neighbourhood of a point p [8], denoted by NEps(p), which
for a dataset D is defined as

NEps(p) = {q ∈ D | dist(p, q) ≤ Eps}

Figure 1: Our data processing pipeline takes as input raw location tracking data (left), as an intermediate stage infers
the location of the stationary service areas and their associated service radius (middle) and outputs the inferred GSPN
performance model (right).

Figure 2: The four-stage data processing pipeline.

Figure 3: Stage two of the data processing pipeline.

That is, the set of points in D that lie in a circular area of
radius Eps around the point p.

3.3.1 Velocity filtering
The location updates from Stage 1 are first separated into
customer paths, one for each recorded customer. A customer
path consists of the location traces of a particular customer’s
movements throughout its stay in the system. For each
path, we calculate a raw velocity curve describing the aver-
age velocity of the customer for each time interval between
consecutive readings. That is, if the distance between loca-
tion readings at times ti and ti+1 is di+1, the corresponding
point on the raw velocity curve is ((ti +ti+1)/2, di+1/(ti+1−
ti)). We then apply a moving average filter to produce a
smoothed velocity curve (see Figure 4). The window size
of the moving average is defined to be the 5% of the total
number of readings in the particular customer’s path.

Figure 4: Application of the moving average filter on
the raw velocity curve (above) to produce the smoothed
velocity curve (below).

We then identify the local minima of each smoothed ve-

locity curve. For each such minimum, we retrieve the cor-
responding location update data points, storing them as a
time-sorted list, one for each customer.

3.3.2 Density filtering
The data points retrieved from the previous layer do not
necessarily correspond to readings where the customer was
in a service area since the customer may have simply paused
en route between service areas. We apply a density filter to
remove such points in regions of low data density.

To remove these points we use a threshold, MinPts, to spec-
ify the minimum number of points that should be present
within the set NEps (p), as well as a relatively small value
for Eps. That is, for each point p in the velocity filtered
data, if |NEps (p)| ≥ MinPts , p remains in the list, else is
discarded. In our implementation the value of MinPts is
chosen to be four, according to the suggestion of [8]. Eps is
chosen to be 0.25 (metres) because the standard error of a
typical RTLS is approximately this value. When this process
is completed for every velocity filtered customer path, the
remaining points from each path are merged (see Figure 3).

3.3.3 DBSCAN clustering
In the third layer the DBSCAN algorithm is applied to group
points in the filtered dataset emerging from the previous
layer into clusters, provided that they satisfy a density cri-
terion. The challenge is to choose parameters for the density
criterion that will best distinguish noise points from points
that actually form the clusters corresponding to service ar-
eas. As before, this criterion is specified by two parameters,
MinPts ′ and Eps ′.

We again choose MinPts ′ to be four as our experience and
that of others is that larger choices do not produce any sig-
nificant difference in results while rapidly becoming compu-
tationally prohibitive [8]. The first step in finding a suitable
value of Eps ′ is to compute the 4-dist value for each point
p. This is defined as the distance between p and its fourth-
nearest neighbour [8]. We then compute and sort the 4-dist
values for all the points in the filtered dataset in descending
order. A suitable value of Eps ′ is identified by finding the
4-dist value of the “first valley” as shown in Figure 5. This
value of Eps ′ best differentiates noise (points to the left of
the valley) from points that potentially lie within service ar-
eas (points to the right of the valley). The value of Eps ′ can
be manually selected or we can apply automated selection
based on interpercentile distance.

Figure 5: The sorted 4-dist values for a sample filtered
dataset.

The centroids of the formed clusters output by DBSCAN
approximate the real locations of the corresponding service
areas. The radius of each service area is conservatively ap-
proximated as 110% of the 95th percentile of the distance
between each point in the cluster and the cluster’s centroid.

3.4 Stage 3
Stage 3 constructs the basic structure of the derived PNPM.
We first create places associated with the service areas in-
ferred from the previous stage. The next step is to create
places associated with customer movement between service
areas, one for every pair of service areas between which cus-
tomer movement was observed, and transitions connecting
places representing service areas to those representing cus-
tomer movement. We call these transitions service area ser-
vice time transitions. Transitions are then created to con-
nect the places associated with customer movement to places
representing destination service areas. We call these tran-
sitions travelling time transitions. The resulting Petri net
structure is illustrated in Figure 6.

For the moment, we do not parameterise the rates of the
transitions; in fact in the next section we show how we re-
place each transition by a GSPN subnet that accurately re-
flects the distribution of the relevant time delays. In prepa-
ration for this, we compute – for each customer – samples
of their sojourn times inside service areas (response time
samples) broken down into waiting time and service time.

In order to estimate the service time a customer receives at
a server’s service area, we first estimate when the customer
enters the service area (entry time) by taking the average
of two timestamps called first appearance time and last dis-
appearance time. Based on the customer’s location traces,
the first appearance time corresponds to the first timestamp
when the customer is identified to be inside the server’s ser-
vice area; the last disappearance time is defined as the last
timestamp when the customer is considered to be outside
the service area. The customer’s exit time is computed in a
similar way, by taking the average of the timestamps of the
two location updates that correspond to the last appearance
and first disappearance [12]. We maintain two time-ordered
lists at each service area to store the customers’ entry and
exit times. At each exit of a customer, we check first if the
previous customer exit time is larger than this particular
customer’s entry time. In this case, the estimated service

time is difference of the previous customer’s exit time from
the current customer’s exit time. Otherwise, the server was
idle upon the customer’s arrival so the service time is sim-
ply the difference between the exit and entry times. We then
compute travelling times by subtracting the customer’s exit
time at the upstream service area from the customer’s entry
time at the downstream service area along the customer’s
path.

Figure 6: Trace of a customer movement from service
area s0 to s1 (above) and its initial representation in a
Petri net model (below).

One of the key challenges in this stage is to distinguish the
cases where a customer simply passes through a service area
without requesting service. To spot these cases, we compute
the average velocity of each customer over a time window
before it reaches a service area and compare it with the
average velocity inside the service area. If the latter is less
than the former we consider the customer having waited
to be serviced by the server. A look-ahead action is also
employed, in order to judge whether a real departure event
occurred by checking if the departed customer returns to a
server’s service area within a short amount of time.

Finally, a simple counting mechanism is used to calculate
the initial routing probabilities of the customer flow struc-
ture. These are represented as immediate transitions in the
resulting PNPM.

3.5 Stage 4
The final stage aims to replace the service area service time
transitions and travelling time transitions with GSPN sub-
nets that accurately reflect the distributions of the corre-
sponding service time and travelling time samples collected
in Stage 3. As shown in Figure 7, the places and transitions
in the GSPN subnets correspond to the phases of the hyper-
Erlang distribution (HErD) which best fits the extracted
timing samples.

The weights of the Erlang branches are represented by the
immediate transitions. Each phase of an Erlang branch is
represented by a timed transition in the GSPN.

We assume infinite server semantics for all timed transitions
included in the subnet. In the representation of the service
time transitions we have an additional complementary place
to control the number of tokens (customers) that are allowed
to be inside the subnet simultaneously. In this research,
we assume service areas with single-server semantics and
therefore the initial marking of this place is one. There is
no such restriction on travelling time transitions.

To compute the candidate best-fit HErDs from our extracted
timing samples, we make use of the G-FIT [16] tool. G-
FIT’s output includes the number of Erlang branches, their

Figure 7: HErD to GSPN correspondence.

weights, the number of phases and the rate for each branch.
We perform an exhaustive enumeration of possible HErDs
up to a maximum number of total states. The best-fit HErD
is chosen to be the one which achieves the lowest score under
the Akaike Information Criterion (AIC) [7].

We have built in support for hierarchical visualisation of
generated PNPM models into PIPE2, the open source Petri
net editor. As shown in Figure 8, this allows for both un-
cluttered visualisation of the higher-level model structure
(without full expansion of subnets) as well as on-demand
detailed inspection of subnets.

4. CASE STUDIES
In this section we conduct two case studies in order to as-
sess the applicability and accuracy of our approach. For
the case studies we have generated location tracking data
using an extended version of the simulator JINQS [10], the
LocTrackJINQS. The synthetic data provide two advantages
over real traces; they allow us to characterise the degree of
accuracy of the inferred distributions and their parameters –
as the exact model parameters and processes are known –
and their generation is performed in a time efficient manner
rather than engaging in long experimental procedures.

We focus on service area inference (second pipeline stage)
and the extraction of the service area service time distribu-
tions (fourth stage). The experimental setup for each case
study is depicted in Figure 9. The simulations take place in
a virtual 25m × 25m environment with customer movements
as illustrated. The customers are assumed to travel between
servers in such a way that each journey has a velocity drawn
from a normal distribution with mean 0.5 m/s and standard
deviation 0.1 m/s for Case Study 1, and a velocity drawn
from a normal distribution with mean 0.3 m/s and standard
deviation 0.1 m/s for Case Study 2. The location update er-
ror is normally distributed with mean 0.15m and standard
deviation 0.2m.

Each service area consists of a single customer processing
server and a random customer service discipline. The ser-
vice time for each server follows a different density function.
Table 1 shows each server’s actual location and service ra-
dius as well as its service time density for each case study.

Server Service Service Time
Location Radius Density

C
a
se

S
tu
d
y
1

Server 0 (2.0,2.0) 0.5 HErD(2,2;0.5,0.5;0.05,0.48)

Server 1 (18.0,2.0) 0.8 Erlang(3,0.065)

Server 2 (18.0,20.0) 0.35 Exp(0.1)

C
a
se

S
tu
d
y
2

Server 0 (5.0,5.0) 0.5 HErD(2,2,4;0.3,0.3,0.4;0.05,0.25,0.6)

Server 1 (10.0,2.0) 0.75 Erlang(4,0.12)

Server 2 (20.0,2.0) 0.3 Exp(0.18)

Server 3 (10.0,8.0) 0.45 Normal(10.5,1.5)

Server 4 (20.0,8.0) 1.5 Exp(0.04)

Table 1: The parameters for each server in the system,
for each case study. The parameters of the HErDs repre-
sent the phase lengths, weights and rate for each branch
respectively, separated by a semi-colon.

4.1 Results
Figures 9(b) and 9(d) show the results of the second stage
of our processing pipeline. Table 2 displays the estimated
location and service radius for each service area as well as
the error between the these and their real values (in terms
of the distance between the real and inferred points).

From these results we can see that the inferred location
matches the real location almost perfectly with a maximum
error of 0.139 metres for the two case studies. The fitted
radius for each server has larger error (max 0.289 metres).

For the purpose of evaluating the sample extraction and
HErD fitting we compute the mean square error (MSE)
between the theoretical and fitted distribution in Table 3.
We also conduct a Kolmogorov–Smirnov test, examining the
compatibility of the extracted service time samples for each
service point with its best-fit HErD (see Table 4). The max-
imum number of states for the HErD to be fitted was set
equal to ten, i.e. N = 10, for all cases when the coefficient
of variation of the extracted sample is greater than 0.4 and
twenty five, i.e. N = 25, when it is less.

Although the approximation of the actual service time den-
sity by the best-fit HErD is very good in all cases (see Fig-
ures 10 and 11), the parameters of the best-fit HErD do not
match the parameters of the actual density in every case.
For example, if we consider Server 0 in the first case study
we see that the best fitted HErD has an additional branch
with two phases and rate equal to 0.001. Its weight though
is 0.006 and this suggests that the contribution from this
branch is not of great significance. In some other cases,
such as Server 2 in the second case study, the best-fit HErD
differs significantly from the actual density. In this example
one would expect to see a one branch HErD with one phase
and rate close to 0.18.

Figure 12 illustrates the inferred PNPMs. We observe that
the structure of both models matches the abstract system
structure of the models used to set up the simulation, i.e. for
each server there exists a corresponding place and an asso-

(a) (b)

Figure 8: Support for hierarchical visualisation of generated PNPMs in PIPE2.
.

(a) (b)

(c) (d)

Figure 9: The experimental setup in terms of abstract system structure and generated location tracking data (a),
(c) and clustering results (b), (d) of the first (above) and second (below) case studies. Light and dark traces indicate
customer movement and stationarity respectively.

ciated subnet – in compact transition form – which models
the server’s service time. Between each pair of places rep-
resenting servers we can also see intermediate travel places
and their associated travelling time subnets.

5. CONCLUSION AND SUMMARY
This paper has presented a data processing pipeline for de-
riving Petri net performance models (in PNML format) from
high-precision location tracking data collected from a class
of simple customer-processing systems. The pipeline infers
the location and radii of service areas in the system, ex-
tracts observed service time and travel time distributions

and fits matching HErD distributions, resulting in a hierar-
chical GSPN model compatible with, amongst other tools,
the PIPE2 open source Petri net editor.

The results of the two case studies indicate that the devel-
oped approach has the potential to infer the stochastic fea-
tures of simple systems accurately, at least when synthetically-
generated location tracking data is used.

Currently our approach has several limitations which we in-
tend to overcome in future work. For example, we have
assumed a single class of customers, single-server service se-
mantics, a single class of customers and a random service

Server Location Service Radius
Real Inferred Error Real Inferred Absolute Error

C
a
se

S
tu
d
y
1

Server 0 (2.0,2.0) (1.983,1.965) 0.039 0.5 0.723 0.223

Server 1 (18.0,2.0) (18.037,2.002) 0.037 0.8 1.007 0.207

Server 2 (18.0,20.0) (17.972,20.135) 0.139 0.35 0.513 0.153

C
a
se

S
tu
d
y
2

Server 0 (5.0,5.0) (5.021,5.019) 0.028 0.5 0.694 0.194

Server 1 (10.0,2.0) (10.022,2.046) 0.051 0.75 0.976 0.226

Server 2 (20.0,2.0) (19.976,1.983) 0.029 0.3 0.589 0.289

Server 3 (10.0,8.0) (9.987,7.999) 0.013 0.45 0.662 0.212

Server 4 (20.0,8.0) (19.977,7.915) 0.088 1.5 1.678 0.178

Table 2: The inferred location and service radius for each server in the system accompanied with the absolute error,
for each case study.

Service Time Fitted HErD Mean Square
Density Parameters Error

Phase Lengths Rate (3 d.p.) Weights (3 d.p.) (MSE)

C
a
se

S
tu
d
y
1

Server 0 HErD(2,2; 0.5,0.5; 0.05,0.48) 2,2,2 0.001,0.056,0.493 0.006,0.497,0.497 7.36E-5

Server 1 Erlang(3,0.065) 4,4 0.001,0.084 0.008,0.992 2.64E-4

Server 2 Exp(0.1) 1 0.107 1.0 2.44E-5

C
a
se

S
tu
d
y
2

Server 0 HErD(2,2,4;0.3,0.3,0.4;0.05,0.25,0.6) 2,4 0.061,0.567 0.335,0.665 5.41E-5

Server 1 Erlang(4,0.12) 4 0.115 1.0 8.19E-5

Server 2 Exp(0.18) 1,2,5 0.0002,0.273,3.120 0.013,0.790,0.197 2.58E-4

Server 3 Normal(10.5,1.5) 25 2.278 1.0 1.15E-4

Server 4 Exp(0.04) 1 0.042 1.0 3.00E-5

Table 3: The HErD parameters fitted by G-FIT for each server’s service time density with the mean square error
between the theoretical and fitted cumulative distribution function, for each case study. The parameters of the HErDs
represent the phase lengths, weights and rate for each branch respectively, separated by a semi-colon.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200

F(
X

)

X

Case Study 1: Cumulative histogram of extracted service time samples for Server 0
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200

F(
X

)

X

Case Study 1: Cumulative histogram of extracted service time samples for Server 1
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

F(
X

)

X

Case Study 1: Cumulative histogram of extracted service time samples for Server 2
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(c)

Figure 10: Case Study 1: Graphs 10(a), 10(b) and 10(c) show the cumulative histogram of the extracted service
time samples and its best-fit hyper-erlang distribution compared with the theoretical distribution for Server 0, Server
1 and Server 2 respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120

F(
X

)

X

Case Study 2: Cumulative histogram of extracted service time samples for Server 0
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

F(
X

)

X

Case Study 2: Cumulative histogram of extracted service time samples for Server 1
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

F(
X

)

X

Case Study 2: Cumulative histogram of extracted service time samples for Server 2
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

F(
X

)

X

Case Study 2: Cumulative histogram of extracted service time samples for Server 3
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120

F(
X

)

X

Case Study 2: Cumulative histogram of extracted service time samples for Server 4
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(e)

Figure 11: Case Study 2: Graphs 11(a), 11(b), 11(c), 11(d) and 11(e) show the cumulative histogram of the extracted
service time samples and its best-fit hyper-erlang distribution compared with the theoretical distribution for Server 0,
Server 1, Server 2, Server 3 and Server 4 respectively.

(a)

(b)

Figure 12: Visualization of the inferred GSPN performance models for case study 1 (above) and case study 2 (below).

Case Study 1 Case Study 2

Server 0 Test Statistic 0.0243 0.0261
α 0.1 0.05 0.1 0.05

Critical Values 0.0908 0.1008 0.0905 0.1005
Compatible ? Yes Yes Yes Yes

Server 1 Test Statistic 0.0640 0.0212
α 0.1 0.05 0.1 0.05

Critical Values 0.1089 0.1209 0.1364 0.1515
Compatible ? Yes Yes Yes Yes

Server 2 Test Statistic 4.2301E-5 0.0751
α 0.1 0.05 0.1 0.05

Critical Values 0.2330 0.2589 0.1372 0.1524
Compatible ? Yes Yes Yes Yes

Server 3 Test Statistic N/A 0.1129
α N/A 0.1 0.05

Critical Values N/A 0.1195 0.1327
Compatible ? N/A Yes Yes

Server 4 Test Statistic N/A 6.1348E-7
α N/A 0.1 0.05

Critical Values N/A 0.1219 1353
Compatible ? N/A Yes Yes

Table 4: Kolmogorov-Smirnov test at significance levels
0.1 and 0.05 applied to the extracted service time sam-
ples for each service point from Case Studies one and
two. The null hypothesis is that each extracted sample
belongs to the corresponding best fitted HErD.

discipline. Key to supporting more general features, such as
multiple customer classes and prioritised service disciplines,
will be the use of Coloured Generalised Stochastic Petri nets
(CGSPNs). Coloured tokens can also be used to control the
routing of customers as they pass through various stages of
processing. Multiple-server semantics may be implemented
by increasing the number of tokens on the complementary
place that controls admission to the service area, as well as
appropriate adjustments to processing rates in the service
time subnet.

Ultimately, we would like to examine the applicability of
our pipeline in the context of more complicated scenarios
using real location tracking data. While widespread adop-
tion of our technique may currently be limited by a lack of
such data, it is clear that this data will become increasingly
available as ever-progressing wireless technology enables the
realisation of the “internet of things”, whereby vast num-
bers of everyday objects are networked and equipped with
high-precision location tracking sensors.

6. REFERENCES
[1] R. Angeles. RFID Technologies: Supply-chain

applications and implementation issues. Information
Systems Management, (22):51–65, 2005.

[2] S. Au-Yeung. Response Times in Healthcare Systems.
PhD thesis, Imperial College London, 2008.

[3] F. Bause and P. Kritzinger. Stochastic Petri Nets.
Friedrich Vieweg & Sohn Verlag, 2002.

[4] J. Billington, S. Christensen, K. V. Hee, E. Kindler,
O. Kummer, L. Petrucci, R. Post, C. Stehno, and
M. Weber. The Petri Net Markup Language:
Concepts, Technology, and Tools. In International
Conference of Applications and Theory of Petri Nets
Proceedings, pages 1023–1024, 2003.

[5] A. Bobbio, A. Horváth, and M. Telek. PhFit: A

General Phase-Type Fitting Tool. International
Conference on Dependable Systems and Networks,
page 543.

[6] P. Bonet, C. Llado, R. Puijaner, and W. Knottenbelt.
PIPE v2.5: A Petri Net Tool for Performance
Modelling. In 23rd Latin American Conference on
Informatics (CLEI2007) Proccedings, San Jose, Costa
Rica, October 2007.

[7] H. Bozdogan. Model selection and Akaike’s
Information Criterion (AIC): The general theory and
its analytical extensions. Psychometrika, 52:345–370,
1987.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In 2nd International
Conference in Knowledge Discovery and Data Mining
(KDD-96), Portland, Oregon, August 1996.

[9] Y. Fang. Hyper-Erlang distribution model and its
application in wireless mobile networks. Wireless
Networks, 7:211–219, 2001.

[10] T. Field. JINQS: An Extensible Library for Simulating
Multiclass Queueing Networks V1.0. User Guide, 2006.

[11] T. Hansen, J. Bardram, and M. Soegaard. Moving out
of the lab: Deploying pervasive technologies in a
hospital. IEEE Pervasive Computing, 5(3):24 –31,
2006.

[12] T.-C. Horng, N. Dingle, A. Jackson, and
W. Knottenbelt. Towards the automated inference of
queueing network models from high-precision location
tracking data. In Proc. 23rd European Conference on
Modelling and Simulation (ECMS 2009), pages
664–674, May 2009.

[13] R. E. A. Khayari, R. Sadre, and B. R. Haverkort.
Fitting world-wide web request traces with the
EM-algorithm. Perform. Eval., 52(2-3):175–191, 2003.

[14] S. J. Kim, S. K. Yoo, H. O. Kim, H. S. Bae, J. J.
Park, K. J. Seo, and B. C. Chang. Smart blood bag
management system in a hospital environment. In
PWC ’06: Proc. 11th International Conference on
Personal Wireless Communications, pages 506–517,
2006.

[15] M. Marsan, G. Conte, and G. Balbo. A Class of
Generalized Stochastic Petri Nets for Performance
Evaluation of Multiprocessor Systems. ACM
Transactions on Computer Systems, 2(2):93–122, 1984.

[16] A. Thümmler, P. Buchholz, and M. Telek. A Novel
Approach for Phase-Type Fitting with the EM
Algorithm. IEEE Transactions on Dependable and
Secure Computing, 3:245–258, 2005.

[17] M. Vankipuram, K. Kahol, T. Cohen, and V. L. Patel.
Toward automated workflow analysis and visualization
in clinical environments. Journal of Biomedical
Informatics, In Press, Corrected Proof, 2010.

[18] F. Wu, F. Kuo, and L. Liu. The Application of RFID
on Drug Safety of Inpatient Nursing Healthcare. In
ICEC ’05: Proc. 7th International Conference on
Electronic Commerce, pages 85–92, August 2005.

[19] Y. Xue, R. Kieckhafer, and F. Choobineh. Automated
construction of GSPN models for flexible
manufacturing systems. Computers in Industry,
37:17–25, 1998.

