
A Policy Based Role Object Model

Emil Lupu Morris Sloman

Imperial College, Department of Computing,
180 Queen’s Gate, London SW7 2BZ, U.K.
E-mail: {e.c.lupu, m.sloman}@doc.ic.ac.uk

Abstract
Enterprise roles define the duties and responsibilities

of the individuals which are assigned to them. This paper
introduces a framework for the management of large
distributed systems which makes use of the concepts
developed in role theory. Our concept of a role groups the
specifications of management policies which define the
rights and duties corresponding to that role. Individuals
may then be assigned to or withdrawn from a role, to
enable rapid and flexible organisational change, without
altering the specification of the policies. We extend this
role concept to include relationships as means of
specifying required interactions, duties and rights
between related roles. Organisations may contain large
numbers of similar roles with multiple relationships
between them, so there is a need for reuse of
specifications. Role and relationship classes permit
multiple instantiation and inheritance is used for
incremental extension of the organisational structure with
minimal specification effort. We also briefly examine
consistency and auditing issues related to this role
framework.

1. Introduction

Many organisations have handbooks of policies and
procedures relating to security or specifications of duties
related to positions in the organisation (job descriptions).
These policies are usually specified in natural language in
terms of groups of employees and organisational roles
rather than individuals but are not analysable or directly
implementable. We have developed a role framework
which can be used to “formally” specify Enterprise
viewpoint role concepts, analyse these specifications for
consistency and translate them into automated agents for
managing distributed systems. We have used the concepts
developed in [1],[2] in order to group the specifications of

the rights and duties in the organisational structure into
roles. We model rights as authorisation policies which
specify what activities a subject1 is permitted (or
forbidden) to perform on a set of target objects. Duties are
modelled as obligation policies which specify what
activities a subject must or must not perform on a set of
target objects. Users may be assigned to or withdrawn
from a role, to enable rapid and flexible organisational
change, without changing the policies. We also consider
the relationships between multiple roles to define the
rights, duties and protocols pertaining to interactions
between roles (e.g. right for a manager to assign a task to
an assistant, or a protocol by which a general practitioner
refers a patient to a specialist). Roles and relationships are
seen as the building blocks of the organisational structure.
An organisation will have many similar roles, for example
a hospital will have several doctors each with their own
specific patients. Role and relationship classes are
therefore defined in order to permit multiple instances to
be created from a single specification. This requires the
definition of policy templates which have to be
instantiated with specific targets for every role instance.
There is also a need for derivation of specialised roles
such as a surgeon from more generic ones such as a
doctor, which can be supported by class inheritance.

Multiple policies apply to objects in the system so it
is necessary to analyse the policies to detect and resolve
conflicts such as a role with a duty to perform an action
which is forbidden, or to detect violations of constraints
expressed as meta-policies. We briefly examine the
conflicts which can occur between management policies,
but further information on conflict detection and
resolution is given in [3]. We also specify concurrency

1 We use the term “subject” to refer to an object representing a user,
human manager or an automated agent which can initiate activities
within the system

Copyright 1997 IEEE. Published in the Proceedings of EDOC'97, October 24-26, 1997 in the Gold Coast, Queensland, Australia. Personal use of
this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained
from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-
1331, USA. Telephone: + Intl. 908-562-3966.

constraints relating to ordering of activities regarding role
interactions.

There is a growing interest for formalising and
automating the clinical process model [4],[5] which has a
high degree of inter-personnel collaboration and
standardised procedures. Thus, most of the examples used
in this paper relate to the responsibilities and interactions
in the health care process.

Section 2 introduces the concepts of domains,
policies and Meta-policies. In Section 3 we define the
roles and relationships. Policy templates, roles and
relationship classes are then discussed in Section 4 and
consistency issues are presented in Section 5.

2. Management services and policies

2.1 Domains

Large distributed systems may contain millions of
objects so it is impractical to specify policies for
individual objects. Objects are therefore grouped in
domains to specify a common management policy or to
structure and partition management responsibility. A
domain is a collection of objects (actually references to
object interfaces) which have been explicitly grouped
together for the purposes of management (cf. file system
directories or folders). A domain is an object, so may also
be a member of another domain. A domain service is
provided for the manipulation of the membership
information. Further, domain scope expressions can be
specified determining the set of objects to which a policy
applies. For example @D1-@D2-O3 represents the
objects that are members of D1 with members of D2 and
object O3 excluded. Our concept of a domain is very
similar to that of a directory in a typical hierarchical file
system. The policy which applies to a domain will, by
default, propagate to sub-domains and to the objects
within them, although this propagation can optionally be
disabled. A User Representation Domain (URD) is a
persistent representation of the human within the
computing system. When a person logs in, an adapter
object (cf. login shell) is created within the URD to act as
the interface process between the person and the computer
system. Other agents representing the human could also
be created in the URD. Details on the domain structure
and the relevant services can be found in [6],[7].

2.2 Policies

Management policies are used in order to separate the
specification of the behaviour from the software
components of the system. They can be dynamically

distributed or retracted from the managers, thus changing
the behaviour and strategy of the management system
without interrupting their functioning. A policy
establishes a relationship, between manager and managed
object domains, which can be either an Obligation
specifying what actions subjects must or must not perform
on target objects or an Authorisation specifying what
actions subjects are authorised or forbidden to invoke on
target objects. The general format of the policies is given
below with optional arguments within brackets:

identifier mode [trigger] subject ‘{’ action ‘}’ target
[constraint] [exception] [parent] [child] [xref] ‘;’

The mode of the policy distinguishes between
positive authorisation (permitted: A+), negative
authorisation (forbidden: A-), positive obligation (must:
O+) and negative obligation (must not: O-). The subject
represents the set of managers assigned to carry out the
actions on the set of target objects. Both sets are specified
using domain scope expressions. Positive obligation
policies can be triggered by time or by composite events
detected within the monitoring system [8]. Constraints
limit the applicability of the policy e.g. between the hours
of 09.00 and 17.00. The policy format and use is further
described in [9]. Examples of policies are:

/* every day nurses are obliged to generate a status log of
the drugs used */

O+ every [1*day] n:@/nurses { generate_log(n) }
@/drugs_db;

/* nurses are not authorised to validate discharges */

A- @/nurses { validate } @/patients/discharges;

Policies can specify actions at different levels of
abstraction. A refinement hierarchy can therefore be built
from the more abstract policies, which can only be
interpreted by humans, to the enactable leaf level policies
or rules which can be interpreted by automated
components. Tools for policy editing and services have
been implemented and are described in [9],[10].
Authorisation policies are translated into access control
lists which are interpreted by security agents in the target
system [11] and obligation policies are disseminated to
distributed automated management agents for
interpretation [10].

2.3 Meta-Policies

Several policies may apply to the same objects either
to reflect different management functionalities
(configuration, performance, monitoring) or because
objects may be members of several domains. Conflicts

may then arise between the various policies. We
distinguish between modality conflicts which arise from
inconsistent modes of the policies, e.g. O+ and O-, and
application-specific conflicts such as separation of duties
or conflicts for resources [12],[3]. It is necessary to
specify constraints pertaining to the attributes of policies
in order to avoid application-specific conflicts. We term
these constraints meta-policies (policies about permitted
policies). They can be expressed as logical predicates
applying to sets of policy objects within a domain. For
example a conflict of duties stating that the same manager
cannot both authorise payment and sign the payment
cheque can be written as:

)P2.actions,sign’belongs(’)P1.actions,authorise’belongs(’

))P2.targets ,P1.targetsintersect(,payment’belongs(’

s)P2.subject s,P1.subjectintersect(fail

pe_expdomain_scoP2P1,

∧
∧

∧←
>∈<∀

Meta-policies, constraining the permitted policies,
can be included in a role or a relationship. Other
constraints, within a policy expression, limit the
applicability of the policy e.g. to a particular time interval,
but are different from the meta-policies which express
constraints of compatibility between policies.

In the following sections we describe the roles,
relationships and associated classes. Consistency
problems and modality conflicts will be examined in
Section 5.

3. Roles and Relationships

The organisational structure can be represented as
inter-related roles. For example a hospital may contain
administrative staff, registrars, surgeons, pharmacists, etc.
who co-operate in order to provide care to a patient. We
initially define a role as a group of policies, specifying its
obligations and authorisations and a relationship as a
group of interacting roles. Relationships also contain the
policies which specify the duties and authorisations of a
role with regards to the other roles e.g. right to assign a
task, obligation to provide some information. These
policies are considered part of the relationship rather than
the individual roles, because their lifetime is dependent on
the lifetime of the relationship. We first examine the role
as a group of policies then we will show how the role can
be extended with constraints and relationships which
specify the role interactions.

3.1 Roles as groups of policies

A role groups the policies specifying the duties and
rights of a particular position inside the organisation.

These policies reference a common subject domain called
the Manager Position Domain (MPD). A user is
assigned to a role by authorising the user to connect to a
proxy object in the MPD which inherits all the rights
pertaining to the role and acts as the user’s representative
in that role (Figure 1). The user interacts with the system
via an adapter object in the URD which is similar to an X
server in that it provides a separate window for each role.
The authorisation policies of the role indicate the
permitted actions and can be used to customise the menus
or choice of commands presented to the user in the
window. This permits a clear separation of activity
context for each role to which a user is assigned, and
makes sure a user does not use the rights pertaining to one
role to perform operations within another role. By
analysing the policies referencing the URD it is possible
to determine to which roles the user has been assigned.
The main advantage of specifying policies in terms of
roles rather than individuals is that organisational
changes, when individuals are assigned to new roles, does
not require any changes to the policy specification
relating to the roles. Individual users can still have other
policies relating to their URD which have nothing to do
with their role, for example private policies permitting
access to personal files or global policies about choosing
passwords relating to all members of the organisation.

Connection

User
Representation

Domain

Authorization
Policy

Adapter
Object

Connection

Target Managed
Objects

Role obligation
& authorization
policies

Role A

Manager Position
Domain for Role B

Manager Position
Domain for Role A

Figure 1 Management roles

The implementation of a role is an object which
maintains a reference to the MPD of the role and a table
of all the policies which are part of the role. Each entry in
this table is composed of a name, unique within the role,
and a reference to the policy object which can be resolved
by the underlying support system (Figure 2). Note that
domains, policies, roles and relationships are objects of
the system and therefore can be target objects for other
management policies. The management of tasks and of
the organisational structure can therefore be specified in
terms of the policies and roles themselves. However, the

model described so far is incomplete since it does not
cater for relationships between roles and does not provide
any means of specifying consistency or synchronisation
constraints relating to the activities of the roles.

3.2 Extended Roles

Obligation policies may synchronise only on the
events which trigger them. This is a low-level mechanism
which requires an administrator specifying policies and
roles, to know which events will be generated by the
system. Although the monitoring system may allow the
use of compound events [8] a notation suitable for
expressing concurrency constraints is required.

Definition 1 A concurrency constraint is an
expression determined by the following EBNF
specification:

expr ::= expr operator expr | ‘{‘ expr ‘}’
| on (condition) expr
| policy:action /* in a role or a relationship*/
| role:policy:action /* in a relationship */

operator ::=
‘;’ /* sequential: a1 ; a2 – a2 must follow a1 */

| ‘&’ /* and: a1 & a2 – a1 and a2 can be performed in
parallel and both must complete */

| ‘|’ /* or: a1 | a2 – perform a1 or a2 */
| ‘#’ /* conflict: a1 # a2 – a1 and a2 cannot overlap */
| ‘||’ /* parallel: a1 || a2 – a1 and a2 may be

performed in parallel. Completion of any will
continue the execution */

Role and policy denote names local to the role or to the
relationship.

This notation allows us to express sequences of
actions, parallelism and synchronisation in concurrency
constraint rules which apply to the policies of a role or of
a relationship. For example a physician must first assess
the condition of a patient then order a blood test and an
antibiotics allergy test. Both must be completed before
any antibiotics are prescribed. This can be written in the
physician’s role as:

p1:assess_condition ; {p2:blood_test & p3:allergy_test} ;
p4:prescribe_antibiotics

Inside a role a policy is referred to by its unique name
local to the role e.g. p1, p2, p3 so as to be able to change a
policy in the role without needing to edit the constraints.
Concurrency constraints can be translated to complex
events [8] which will trigger the execution of activities
[13]. This allows us to combine several concurrency
constraints in a complex event graph and perform
causality analysis on the graph e.g. detection of cycles. A
role object maintains a concurrency constraint table where

each entry contains a name unique within the table and a
constraint expression.

In addition to concurrency constraints Meta-Policies
may constrain the group of policies which comprise a
role, e.g. the maximum number of patients that one nurse
can look after is limited to 10. Furthermore a role refers to
the relationships of which it is part and which contain the
policies having other related roles as target. We therefore
define a role as follows:

Definition 2 A role (r) is defined by the MPD and the
sets of: policies <p> specifying the obligations and
authorisations associated with the position, relationships
<rel> in which the role is involved and constraints
(concurrency constraints <c> and meta-policies <mp>).
r = <mpd,<p>, <rel>, <c>, <mp>> where each element in
the sets is designated by a name local to the role (see
Figure 2).

For example, the role of a physician in a hospital may
contain the obligations towards his patients,
authorisations regarding the use and prescription of drugs
and his relationships with the nurses, radiologists and
administrative staff of the hospital. Note that any policy
belonging to a role has the MPD as subject. In the
remainder of the paper we will therefore omit the subject
of a policy in a role or represent it by the keyword MPD.
A role contains references to the relationships it is part of.
The set <rel> must therefore correspond to the set of all
the relationships in the system which contain the role ‘r’.

Role

relationships

policies

concurrency constraints

meta policies

Role object references

name policy object
reference

name expression

name expression

MPD

Domain path

Figure 2 Role Implementation

In the following sections we examine how roles
relate to each other and how interaction protocols may be
defined.

3.3 Relationships

Relationships between roles define the policies
regarding the related roles, e.g. right to assign a task to a
role and policies regarding the use of shared resources.
However, this is not sufficient since managers interact
and co-operate with each other in order to perform their

tasks. Relationships must therefore specify the protocols
for the required interactions between various roles. For
example, referring a patient to a specialist must be done
according to a pre-established protocol which ensures
availability of data and leaves no ambiguity as to whether
the patient will be consulted or not by the specialist.
Interaction protocols are specified by a set of rules
triggered by pattern matching on the type-chain of the
incoming messages.

Definition 3 An interaction protocol is a set of rules
defined according to the following specification:

rule ::=
role regular_expression :: guard ⇒ action_rule

action_rule ::= action | { action } | action ‘or’ action
| action ‘,’ action

action ::= object_invocation
| generate_event(event)
| message ‘→‘ role

message ::= [type_chain, data]

where role denotes a name local to the relationship.

Each rule of the protocol is associated with a ‘role’ of
the relationship. Each exchanged message must have a
type belonging to a finite Universe of Discourse [14]
defined for each interaction protocol. An incoming
message triggers one or several of the rules associated
with the destination role by matching the regular
expressions against the type_chain contained in the
incoming message. The type_chain is the sequence of the
types of all exchanged messages in the current interaction
e.g. request.deny denotes a denial made in response to a
request. The guard is a predicate on the contents of the
message which must be satisfied before the rule is
triggered. The rule indicates a sequence of actions to be
performed, reply to be sent or events to be generated.
When a human manager is assigned to a role it is
necessary to allow the manager some freedom of choice
in the course of actions to be taken while still constraining
him to remain within the framework of the specified
protocol. The human manager can then select between the
various matched rules (if several) or choose between the
alternatives offered by the use of ‘or’ in the rules. In the
case where automated managers are assigned to a role
determinism can be obtained by preventing the use of ‘or’

in the specification of the rules and defining a simple
heuristics for matching the rules e.g. first rule matched.
For example the protocol for referring a patient for
examination to a specialist may be specified in our
notation as shown in Example 1.

Rule (2) allows the specialist to choose between
various options: refuse to examine the patient, examine
and return results, or request further data. In this last case
the protocol prevents the specialist from responding by
anything but a result if additional data has been requested.
The request for additional data therefore implies that the
specialist has accepted the patient for examination (4).
The rule matching the incoming request (3) may also be
extended to generate an event which can trigger a policy
and automatically retrieve some of the information
regarding the patient from the database. Each time a new
message is sent the type of the message is appended to the
type-chain contained in the received message. This
enables us to specify regular expressions which take into
account the past stages of the interaction. For example
request.{req_data.data}3 matches the case where three
request_data.data sequences have already occurred. A
new rule may in this case allow the doctor to terminate
the interaction.

Under the assumption of a finite Universe of
Discourse and by using production rules, it is possible to
build a commitment calculus which permits assertions to
be made about the state of the system and determines the
commitments of the participants in the interaction from
the messages exchanged. A large amount of work exists
in this area based on the Speech Acts theory [15]. It is not
our intention to produce yet another normative speech
system, but it is worth pointing out that such a facility can
be built for the purposes of office automation using the
given interaction rules.

Both the interaction protocol rules and the policies
pertain to a role i.e. they are associated with a role within
the relationship. Relationships may be constrained in the
same way as roles by concurrency constraints and meta-
policies for which they define a scope of validity.

Definition 4 A relationship (rel) is defined by the set of
roles <r>, policies <p>, interaction protocols <ip> and
constraints (<c> and <mp>) defining the behaviour of the
related parties. rel = <<r>, <p>, <ip>, <c>, <mp>> where

Example1 Doctor – specialist interaction protocol

Role: doctor Role: specialist
(1) [request, patient_id] → specialist (2) request ⇒ [reject, reason] → doctor or

[results, res] → doctor or
[req_data, data requested] → doctor

(3) *.req_data ⇒ [data,] → specialist (4) request.*.data ⇒ [results, res] → doctor

each element in the set is designated by a name local to
the relationship.

Several types of relationships can be defined in this
way. Supervision of work can be specified by obligations
to provide reports, checks on completed tasks and
protocols for requesting authorisations. Contractual
relationships are defined by the obligations of each of the
contractual parties, authorisations regarding the use of
shared resources and interaction protocols for negotiation
and exchange of documents. A wide range of
relationships can therefore be modelled giving a more
accurate and flexible representation of the organisational
structure. In particular, organisations with decentralised
management can be modelled in addition to the
centralised hierarchical structure. When a role of the
relationship (<r> set) is a target of one of the policies (e.g.
assignment of a task), the role is designated by its unique
name local to the relationship e.g. doctor, specialist. This
indirection is necessary in order to be able to replace a
role in the relationship without changing the policies or
other components of the relationship. Figure 3
summarises the components of our Role framework.

Obligation &
Authorisation
Policies

Interaction
Protocol
Specification

Intra-role
Constraints
Specification

Constraints
Specification

For Each Relationship

For Target Managed Objects

Manager
Position
Domain

Obligation &
Authorisation
Policies

Figure 3 Related Role

4. Classes and Templates

An organisation may contain large numbers of roles
with few differences between them. Furthermore, each
role may be part of a large number of relationships. We
introduce classes and templates in order to reduce the
number and complexity of the specifications. For example
a nurse role class can be specified and used to create the
nurse-instance roles for wards 3,4 and 10. Each instance
may then be customised for any particular task relating to
a specific ward and a specific person assigned to each
role. In this section we define the role object model and
examine its uses. The definition of role classes is based
upon policy templates (which are specifications of duties
and rights independent of subject, target or both).

4.1 Policy Templates

Policy templates are used in order to provide the
reuse of the policy specifications according to their
domain of application.

Definition 5 A policy template uses variables to
represent subjects and/or targets i.e. specifies the policy
actions and constraints which can be reused for different
subjects and targets.

The instantiation of a policy object from a policy
template is done by specifying the subjects and targets.
For example in a hospital a policy template such as the
one below may be specified (S and T represent variables).
Note the use of the constraint to limit the applicability of
the policy to particular object instances within the target
domain T.

/* subjects are authorised to administer analgesics when
the temperature of the target is between 37 and 38.5 */

A+ S { administer(analgesics) } x:T
when (x.temp > 37) && (x.temp < 38.5)

The following policy authorising a nurse to administer
analgesics to lung-disease patients may then be created
from the above template by assigning values to S and T.

A+ @/personnel/nurses { administer(analgesics) }
x:@/patients/lung-diseases
when (x.temperature > 37) && (x.temperature < 38.5)

A policy template may not inherit from another
policy template since the components of a policy (actions,
condition, trigger, etc.) are closely related and cannot be
combined by inheritance. The policy will maintain a
reference to the template from which it has been created
in addition to the references maintained to the policies it
has been refined from. When a policy template is
instantiated from a role class, only the target has to be
specified since the subject is determined by the MPD.
Similarly, upon instantiation of a relationship the subject
of a policy is the MPD of the role it is associated with.

4.2 Defining Role Classes

A role class groups specifications of the policy
templates for the duties and rights of a generic role in the
organisation e.g. nurse, engineer, marketing manager.
When a role instance is created, a MPD for the role is
then created so a manager cannot be assigned to a role
class, only to a role instance. The role class contains only
policy templates, not instances. Consider the example of
the nurse role class, containing a set of policy templates
which may have some undefined targets. The nurse class
may contain the following templates:

/* the nurse is authorised to access the drugs database */

pt_1 A+ D { read(), search(), update() }
@/software/databases/drugs_db

/* nurses must monitor their patients */

pt_2 O+ D { monitor() } P

When the role is instantiated the MPD can be
assigned to the variable D of template pt_1 which is then
fully specified as the same target domain is used for all
nurse instances. However pt_2 also needs a target domain
representing the specific patients for which the nurse
instance is responsible, to be assigned to variable P. Note
that instead of specifying the pt_1 policy template, a
global policy instance (which is not part of the role) with
a subject referencing a domain containing all instances of
the nurse role could have been specified. The
disadvantage of this approach is that the system must be
constrained to include every nurse role in a given domain
which is very difficult to implement and to check. If
multiple instances of a particular policy template are
required in a role, then the role class must specify a
different local name for each reference to the policy
template. This situation is however unlikely to occur
because, within the role, policies created from the same
template differ only in their targets which can be
composed into a single domain scope expression to define
all the targets e.g. domain_A + domain_B - domain_C.
The concurrency constraints defined in a role class will
apply, without change, to all the instances of the class.
This is because the concurrency constraint refers to
policies by their local name in the role and only the
targets of the policy change between the policy instance
and the policy template.

Concurrency constraints may also be specified for
policy templates and refer to policies by their local name
within the roles or relationships. They reference only the
activities within a policy, so they can apply to either
policy objects or templates. Consider the following policy
templates.

/* the nurse must administer analgesics when the
temperature of the target is > 37 */

pt_3 O+ on x.temperature > 37
D { administer(analgesics) } x:T

/* the nurse must update the database when drugs have
been administered */

pt_4 O+ on administer_drugs D { update }
@/software/databases/drugs_db

The following constraint ensures that the drugs
database is updated after drugs have been administered.

c_1 pt_3:administer(analgesics) ; pt_4:update

Finally a role class may reference relationship classes
defined as described in the following section. The
reference to a relationship class specifies that an instance
of the role class cannot be created without the
corresponding relationship being instantiated. For
example a nurse role may not be created without creating
a relationship with a head of ward role. Note that only
required relationships must be specified. Additional
relationships, for example with the physicians, may be
added at a later stage.

Definition 6 A role class (r*) is defined by an MPD
variable, a set of policy templates, a set of intra-role
concurrency constraints, a set of meta policies and a set
of relationship classes. r* = <MPD, <p*>, <c>, <mp>,
<rel*>> where each element in the sets is designated by a
local name.

An instance of the role class can be created by
creating the MPD, instantiating policy objects by
specifying all undefined targets for each of the elements
in the <p*> set, and assigning references to the
relationships in the <rel*> set. Concurrency constraints
apply to policies or policy templates. The meta-policies
can be used to prevent policies which do not satisfy the
meta-policy constraints from being created.

4.3 Implementing inheritance

Single inheritance implements a specialisation of
role classes. For example a role class can be specified for
a specialised nurse or a paediatric nurse which inherit
from the nurse role class (Figure 4). New duties and rights
can then be specified for the specialised nurse that do not
apply for the nurse. Furthermore, a sub-class must be able
to override or cancel policy templates of a super-class e.g.
a specialised nurse may not have a duty to monitor all
patients but deal only with specific cases (Figure 4 -
policy pt_2). Inheritance can be implemented by
maintaining a reference to the super-class object and new
policy templates must have different names from those in
the super-class. If a new policy template or constraint has
the same name as one from the super-class, the inherited
one will be overridden. Concurrency constraints are
evaluated in the namespace of the sub-class so policy
names will be replaced with the local reference overriding
inherited ones. However, overriding policy templates may
introduce inconsistencies if the new policy does not
contain the actions referred to by the concurrency
constraints. These inconsistencies may be detected by an
automated process of the role editor but changes to the
concurrency constraints will have to be done manually.

Composing role classes by multiple inheritance may
also be a desirable feature. For example a paediatric nurse

can inherit rights and duties from a nurse role class and a
generic_childcare role class (see Figure 4). However,
multiple inheritance introduces the problems arising from
multiple super-classes having policies with the same
name. For example in Figure 4, both the nurse and the
generic_childcare role classes define a policy template
with the name pt_2. A standard solution is to unify the
name spaces in the subclass and assign a precedence order
to the super-classes e.g. the textual order in the class
inheritance list. It is then possible to override the unified
policy names with new ones defined in the sub-class, as
for single inheritance. We intend to implement multiple
inheritance by combining the specifications of the super-
classes rather then having policies with the same name
override each other. In this case the name spaces of the
super-classes are kept disjoint. Referring to an inherited
policy template, whether to override it or within a new
concurrency constraint must then be done by prefixing the
name of that template with the name of the super-class
from which it was inherited e.g. nurse.pt_2 (Figure 4).
Inherited concurrency constraints have to be evaluated
within the context of the class from which they have been
inherited plus all overridden policy templates.

Super-classes also maintain references to the sub-
classes which inherit from them and classes maintain
references to the objects which have been instantiated
from them. This permits us to define skills [16]. Skills
may be associated with roles outlining their basic
capabilities. A trader service may then be used to locate
roles which have specific skills. It is thus possible for the
trader to browse the inheritance graph and determine the
roles which have for example, the skills of a nurse. The
definition and implementation of skills requires however
further study.

A class may not be changed once sub-classes or
instances have been created from it. We may in the future

relax this constraint and propagate changes to subclasses
and to instances. This is possible because references to
subclasses are maintained as mentioned above.

4.4 Relationship Classes

A relationship class has a set of elements each of a
given role class and a possibly empty set of roles e.g. the
relationship class with a unique head of personnel role. A
relationship class may therefore contain the policy objects
pertaining to the roles and a set of policy templates
pertaining to the role classes.

Definition 7 A relationship class (rel*) is defined by a
(possibly empty) set of roles <r>, a set of role classes
<r*>, a set of interaction protocol rules <ip>, and a set of
constraints (concurrency <c> and meta-policies <mp>).
The relationship class also contains a set of policies <p>
(each one of them being associated with a role) and a set
of policy templates <p*> (each one of them being
associated with a role class). Interaction protocol rules
may be associated with either a role or a role class.
rel* = <<r>, <r*>, <p>, <p*>, <c>, <mp>, <ip>>

Every instance of a relationship class containing role
instances will be a new relationship with those role
instances. Within a relationship class the concurrency
constraints may refer to items in either the <p> or the
<p*> set. A relationship class can be instantiated by
assigning each of the references in the sets <p*> and
<r*>. The named elements of the <r*> set act as place
holders i.e. upon instantiation of the relationship class a
role instance must be assigned to that name. Further the
role instance must be an instance of the class which is
associated with the name in the relationship class.

Consider for example a relationship class between a
nurse role class, a physician role class and a head of ward
role (Example 2). The relationship contains the policy
templates obligating the nurse to report every day to head
of ward (np1). The physician has the obligation of
specifying treatments for the patients (pp1) and the head
of ward is responsible for assigning duties to the nurse,
scheduling the activities and ordering the necessary drugs
(hp1, hp2, hp3). Furthermore, an interaction protocol is
provided which enables the doctor to request that a
special treatment be performed (ip1). The request has to
be sent to the head of ward which can decide to reject it or
to assign a nurse (ip2). The reply must then be sent to
both the nurse and the physician. The nurse must notify
both the physician and the head of ward (ip3) when the
treatment has been completed. c_1 constrains the head of
ward to assign duties only after the care treatment has
been specified by the physician, a schedule has been
elaborated and drugs have been ordered.

Specialised
nurse

nurse
generic_childcare

Surgical nurse

Paediatric nurse

policies

nurse.pt_2

generic_childcare.pt_2

policies

policies

pt_1
pt_2

ref.
ref.

pt_2 ref.

policies Overriding policies
with multiple
inheritance

pt_2 /* */

Overriding
with single
inheritance

Figure 4 Role class inheritance graph

Single inheritance and overloading occur for the
relationship classes in much the same way as for the role
classes. For example the relationship between a surgical
nurse and a surgeon may inherit from the relationship
between a nurse and a doctor and add special interaction
protocols for urgent interventions (Figure 5).

Overloading of a role or a role class in a relationship
is restricted to one of the sub-classes of the roles in the
relationship super-class. For example relationship2 could
have been between a surgeon and a specialised nurse but
not between a surgeon and a nurse or any other role class
which is not a sub-class of a specialised nurse. In this
respect the role class hierarchy implements a type/sub-
type mechanism for the relationship classes. Multiple
inheritance is not allowed because a direct combination of
two relationships by inheritance is undefined.

specialised
nurse

surgical
nurse

surgeon

relationship 1

doctor

relationship 2

Figure 5 Role and relationship inheritance

5. Consistency

Consistency of the role framework is ensured by
various checks on the role and relationship specifications.
The role editor will therefore use a set of tools for
analysing and detecting conflicts or inconsistencies in the
specification. We have already implemented a tool for
off-line detection of modality conflicts which uses the
principle of domain nesting [17] for giving precedence to
some policies and automatically resolving some conflicts.

 Modality conflicts are inconsistencies in the policy
specification which may arise when two or more policies
with modalities of opposite sign refer to the same
subjects, actions and targets. This occurs when there is a
triple overlap between the sets of subjects, targets and
actions, and so can be determined by syntactic analysis of
polices. There are three types of modality conflicts:

• O+/O- the subjects are both required and required not
to perform the same actions on the target objects.

• A+/A- the subjects are both authorised and forbidden
to perform the actions on the target objects.

• O+/A- the subjects are required but forbidden to
perform the actions on the target objects (obligation
does not imply authorisation in our case).
Obligations in our model do not imply authorisation

and we assume a negative default policy i.e. everything is
forbidden. In this way any action present in an obligation
policy and not specifically authorised by an authorisation
policy will be detected as a conflict.

A second type of conflict refers to the consistency
between what is contained in the policies i.e. which
subjects, targets and actions are involved and external
criteria such as limited resources or the overall policies of

Example 2 Relationship class

R1: nurse (role class) R2: physician (role class) R3: head of ward (role)

Policies

np1: O+ every 1*day { report}
R3

pp1: O+{specify_care } patients hp1: O+ {assign_duties} R1

hp2: O+ {generate_schedule_of_activities}

hp3: O+ {order_drugs } pharmacy

Interaction protocols e.g. special treatment

ip3: *.appoint =>
[confirm, ...] → R2, R3

ip1: [request, ...] → R3 ip2: request => [reject,...] → R2
 or [assign, ...] → R1, R2

Concurrency constraints

c_1: R2:p1:specify_care ; {R3:p2:generate_schedule & R3:p3:order_drugs } ; R3:p1:assign_duties

the organisation. An example of this type of conflict
arises from the principle of separation of duties [18] e.g.
the same manager cannot authorise payments and sign the
payment cheques. These conflicts are application-
specific and must be specified using meta-policies.
Several types of application-specific conflicts such as
conflict of priorities for resources, conflict of duties,
conflict of interests, multiple managers conflict and self-
management conflict have been identified in [12] and
classified according to the overlaps between the subject,
action and target sets. Further details on the conflict
analysis for management policies are given in [3]. We
have been experimenting with meta-policies written in
Prolog but will have to define a notation more specific to
the policies.

Concurrency constraints may also exhibit
inconsistencies; for example defining a cyclic
interdependency between the activities. These may be
detected by analysing the event graph which can be
generated from the constraints. Any presence of cycles in
the graph will reveal an inconsistency.

Interaction protocols may suffer from incompleteness
rather than inconsistency. Their specification by rules
may lead to confusion regarding ‘who sends which
message’ or ‘is there a rule triggered by the sent
message’. Because we assume a finite Universe of
Discourse it is possible to initially specify a protocol by a
state transition network [19]. The initial set of rules can
then be deduced by considering the regular expressions
which match the various states [13]. By providing a
graphical interface to the state transition network
specification is made easier and completeness problems
can be avoided.

6. Related Work

Sandhu et al. introduce four different models for Role
Based Access Control (RBAC0-3) [20]. In RBAC0 a role
is a mapping between a set of users and a set of
permissions. A set of users and a set of permissions are
thus associated under a named role e.g. all the nurses in
the hospital have the role ‘nurse’ and the access rights
associated with it. A user is allowed to combine several
roles in a single session. RBAC1 introduces role
hierarchies as a means of inheriting access rights from
one role to another. Senior roles inherit the access rights
of more junior roles e.g. a physician inherits the access
rights of a general health-care provider. This approach
introduces undesired complexities when some of the
access rights must be kept private to a more junior role
e.g. a radiologist cannot issue prescriptions and thus
should not inherit this access right from a physician. This
leads to the proliferation of ‘virtual’ roles which do not

correspond to positions in the organisation but are merely
used to define common permissions which can be
inherited. RBAC2 introduces constraints on the role
structure which bear some similarity to our meta-policies.
Finally RBAC3 combines the features of the previous
three models. This work deals only with access rights and
not duties which somewhat simplifies the problem.
Permissions always associate actions with target objects
so they cannot define policy templates. This causes
difficulties instantiating multiple role instances referring
to different target objects.

Singh and Rein describe a role structure based on
activities and interactions [21],[22],[23],[24]. They define
the role in terms of available methods and relationships to
‘partner‘ objects. Moreover, they identify a set of
conflicting objects, temporal ordering constraints and
constraints on the activities for each role. The interactions
between roles are based on Petri-Net modelling although
a higher-level graphical notation is defined. The model
has a sound operational semantics based on PetriNets but
does not take into account access control issues and does
not provide any means for inheritance or reuse of the
specification.

Skarmeas defines roles for multi-agent systems [16].
An elementary role is defined as a collection of complex
tasks and a hierarchy of roles is introduced which reflects
the organisational task decomposition. Roles relate to
each other by contracts which may contain sub-roles and
references to other contracts. This work uses roles as a
structuring tool for tasks which are assumed to be hard-
coded and available to the agent. It ignores problems
related to constraints, inheritance or concurrency.

7. Conclusions

This paper has introduced policies, roles and
relationships for specifying enterprise viewpoint concepts
which can be implemented by computational objects thus
permitting automation of management. Roles identify the
duties and authorisations of the individuals which are
assigned to them. It is possible to assign and withdraw
managers from roles without changing the specification of
the role thus enabling rapid and flexible organisational
change. Auditing of the role specification can be achieved
by analysing the policies, with their explicit subject and
target domains, to determine the duties and permissions of
an individual assigned to multiple roles or to determine
who has responsibility for or access rights to an object.

We have defined the specification of relationships
between roles which include the protocols for required
interactions. It is thus possible to model various types of
relationships such as peer-to-peer, supervision and
contractual arrangements. Roles and relationships can be

used to describe and analyse the organisational structure
and to implement policies and procedures for enforcing
security and ensuring quality.

There are many roles and relationships in an
organisation. Similar specifications can be grouped in
classes permitting re-use of the specifications and
incremental design. We have shown what information is
needed to create role and policy instances from their
classes. Our work has shown that relying only on instance
inheritance is not practical. It is essential to be able to
parameterise instances. We are currently implementing
the role object model and the role and relationship editor
using a CORBA-based distributed programming
environment. Although the current role editor offers the
basic support needed for defining roles, relationships,
policies and their associated classes it does not yet cater
for the automatic detection of name clashes or checks for
consistency of specifications. Also it does not yet offer
transparent visualisation of inherited elements.

A conflict detection tool for modality conflicts has
been implemented and some work on the specification
and validation of meta-policies has been done [3]. Further
work is needed along this line in particular for defining a
meta-policy notation (we have used Prolog up to now).
Although initial grammars of both concurrency
constraints and interaction protocol rules have been
specified, further work is in progress for the
implementation of the role agents which interpret
obligation policies.

We intend to investigate the applicability of software
engineering goal refinement tools and techniques for
policy refinement and its bearing on the role object
model. In particular the task decomposition and the
assignment of sub-tasks to roles should be tracked to and
from the roles and relationships for auditing purposes. In
addition further work is needed on checking consistency
of policy specifications and to determine what actions are
performed when an event is triggered. This will form part
of a role and policy specification toolset.

8. Acknowledgements

We gratefully acknowledge financial support for the
EPSRC RoleMan project (GR/K 37512), from Fujitsu
Network Systems Laboratories for the Pro-Active Role
Based Management for Distributed Services project and
from British Telecom for the Management of Multimedia
Networks project. We are grateful to Stephen Crane and
Nat Pryce for many comments which have improved this
paper. We also acknowledge the contribution of our
colleagues to the concepts described in this paper.

9. References

[1] B. J. Biddle, Role Theory, Expectations Identities and
Behaviour, Academic Press Inc, 1979.

[2] B. J. Biddle and E. J. Thomas, Eds, Role Theory: Concepts
and Research. New York, Robert E. Krieger Publishing
Company, 1979.

[3] E. C. Lupu and M. S. Sloman, “Conflict Analysis for
Management Policies”, IFIP/IEEE International Symposium on
Integrated Network Management (IM formerly known as ISINM
97), San Diego, Chapman & Hall, 1997.

[4] R. Reddy, et al., “ARTEMIS: A Research Testbed for
Collaborative Health Care Informatics”, IEEE WET-ICE,
Morgantown, pp. 60-65, IEEE Computer Society Press, 1993.

[5] M. Fowler, et al., “Using Object-Oriented Analysis, Design
and Implementation Techniques in the Clinical Domain”,
Institute of Physics Publishing Bulletin 1993. Observations and
Measurement. Report on Object Analysis and Design, 2,3,
(1995), pp. 20-24,37.

[6] M. S. Sloman, “Policy Driven Management for Distributed
Systems”. Journal of Network and Systems Management, 2(4):
333-360, Plenum Press Publishing, 1994.

[7] M. S. Sloman and K. P. Twidle, “Domains: A Framework
for Structuring Management Policy”, In Network and
Distributed Systems Management. Sloman M. ed., Addison
Wesley, 433–453, 1994.

[8] M. Mansouri-Samani and M. S. Sloman, “GEM - A
Generalised Event Monitoring Language for Distributed
Systems”, IEE/IOP/BCS Distributed Systems Engineering
Journal, 4(2), June 1997.

[9] D. Marriott and M. Sloman, “Management Policy Service
for Distributed Systems”, IEEE Third Int. Workshop on Services
in Distributed and Networked Environments (SDNE’96), pp. 2-
9, Macau , June 1996.

[10] D. Marriott and M. Sloman, “Implementation of a
Management Agent for Interpreting Obligation Policy”,
IEEE/IFIP Distributed Systems Operations and Management
(DSOM 96), L’Aquila (Italy), 1996.

[11] N. Yialelis and M. Sloman, “A Security Framework
Supporting Domain-Based Access Control in Distributed
Systems”, IEEE ISOC Symposium on Network and Distributed
Systems Security’96, San Diego, pp. 26-34, Feb. 1996.

[12] J. D. Moffett and M. S. Sloman, “Policy Conflict Analysis
in Distributed System Management”, Ablex Publishing Journal
of Organisational Computing, 4(1): 1-22, 1994.

[13] E. C. Lupu and M. S. Sloman, “Towards a Role Based
Framework for Distributed Systems Management”, Journal of
Network and Systems Management, 5(1), Plenum Press
Publishing, 1997.

[14] P. de Greef, et al., “Towards a Specification Language for
Cooperation Methods”, 16th German AI-Conference, GWAI’92,
Berlin, Springer-Verlag, 1992.

[15] J. R. Searle, Expression and Meaning-Studies in the Theory
of Speech Acts, Cambridge University Press, 1979.

[16] N. Skarmeas, “Organisations through Roles and Agents”,
International Workshop on the Design of Cooperative Systems
(COOP’95), Antibes-France, 1995.

[17] A. Heydon, “Miro: Visual Specification of Security”, IEEE
Transactions on Software Engineering, 16(10): 1185-1197,
IEEE Press, 1990.

[18] D. C. Clark and D. R. Wilson, “A comparison of
Commercial and Military Computer Security Policies”, IEEE
Symposium on Security and Privacy, 1987.

[19] T. Winograd, “A Language/Action perspective on the
Design of Cooperative Work”, In Computer Supported
Cooperative Work: A book of readings. I. Greif ed., Morgan
Kaufmann Publishers, 1988.

[20] R. S. Sandhu, et al. “Role-Based Access Control Models”,
IEEE Computer 29(2): 38-47, IEEE Press, 1996.

[21] B. Singh, “Interconnected Roles (IR): A Coordination
Model”, Technical Report CT-084-92, MCC, 1992.

[22] B. Singh and G. L. Rein, “Role Interaction nets (RINs): A
Process Description Formalism”, Technical Report, CT-083-92,
MCC, 1992.

[23] G. L. Rein, “Collaboration Technology for Organisation
Design”, Twenty-Sixth Annual Hawaii International Conference
on System Sciences, 1993.

[24] G. L. Rein, et al., “The Grand Challenge: Building
Evolutionary Technologies”, Twenty-Sixth Annual Hawaii
International Conference on System Sciences, Maui (Hawaii),
1993.

