Abstraction-based Model Checking using Modal Transition Systems

Patrice Godefroid\(^1\), Michael Huth\(^2\), and Radha Jagadeesan\(^*3\)

\(^1\) Bell Laboratories, Lucent Technologies, god@bell-labs.com
\(^2\) Computing and Information Sciences, Kansas State University, huth@cis.ksu.edu
\(^3\) Department of Computer Science, Loyola University of Chicago, radha@cs.luc.edu

Abstract. We present a framework for automatic program abstraction that can be used for model checking any formula of the modal mu-calculus. Unlike traditional conservative abstractions which can only prove universal properties, our framework can both prove and disprove any formula including arbitrarily nested path quantifiers. We discuss algorithms for automatically generating an abstract Modal Transition System (MTS) by adapting existing predicate and cartesian abstraction techniques. We show that model checking arbitrary formulas using abstract MTSs can be done at the same computational cost as model checking universal formulas using conservative abstractions.

1 Introduction

There are essentially two approaches for extending the applicability of model checking to programs written in general-purpose programming languages such as C or Java. The first approach consists of adapting existing model-checking techniques into a form of systematic testing that is applicable to processes executing arbitrary code (e.g., [16]); although sound, this approach is inherently incomplete for large systems. The second approach consists of automatically extracting a model out of a program by a static analysis of its code, and of analyzing this model using existing model-checking techniques (e.g., [1, 9]); although automatic abstraction can be complete, this approach is generally unsound since abstraction usually introduces unrealistic behaviors that may yield to spurious errors being reported when analyzing the model.

In this paper, we study the latter approach and show how automatic abstraction can be performed in such a way that it yields verification results whose completeness and soundness can be both guaranteed. We also show how automatic abstraction can be applied to check arbitrary formulas of the modal mu-calculus [22], thus including negation and arbitrarily nested path quantifiers. Maybe surprisingly, both extensions can be implemented in combination with existing abstraction techniques without incurring any significant computational overhead. Our algorithms could be used to extend the scope of existing tools for (conservative) automatic abstraction such as SLAM [1] and Bandera [9],

\(^*\) Supported by NSF CCR-9901071.
which currently support the verification of universal properties only [7]. Our algorithms to construct abstract transition systems can also be used in the context of the verification of arbitrary modal mu-calculus formulas with methods based on theorem-proving [30].

Allowing the specification of arbitrary formulas with nested path quantifiers makes it possible to express more elaborate properties of the temporal behavior of a reactive program, such as “for all possible input values, there exists an execution path of the system that allows the user to restart the service”. Unfortunately, the verification of such properties necessitates the relations between the concrete program and an abstract program to be more constraining than a simulation relation [26, 25]. Although bisimulation [28, 27] over Labeled Transition Systems (LTSs) reflects all such general properties [18], it is persuasively argued in [24, 23] to be ill-suited for our context: as an equivalence relation, it confines the choice of an abstraction to the implementation’s equivalence class, which is too limiting to allow for compact abstractions.

For this reason, we use Modal Transition Systems (MTS) [24, 23] for representing abstract systems in order to allow their specifications to be partially defined. MTSs are LTSs with two kinds of transitions, termed may and must transitions, satisfying the consistency condition that every must-transition is also a may-transition. A MTS can be “refined” by preserving at least all must-transitions (and maybe adding some) while eliminating some may-transitions. Since this refinement preorder on MTSs preserves all properties expressible in the modal mu-calculus, we can verify any such properties on the source (concrete) program by verifying these on any abstract MTS that is refined by this concrete program; conversely, if there exists a behavior of the abstract MTS that refutes the property, the existence of a refuting behavior of the concrete program is also immediately guaranteed.

An alternative representation for abstract systems is the partial Kripke structure [4, 5]. Partial Kripke structures are Kripke structures whose states are labeled with atomic propositions that can have any of three possible truth values: true, false or unknown. Partial Kripke structures are closely related to MTSs since the transition relation of a MTS can be viewed as a function associating each transition with one of three possible values: must-transitions correspond to the value true, may-transitions that are not must-transition are mapped to unknown, and absent transitions render false. It can be shown that any partial Kripke structure can be translated into an equivalent MTS, and vice versa. This correspondence makes it possible to apply the results of [4, 5] (in particular, model-checking algorithms and complexity bounds) to the context of MTSs. Conversely, the abstraction techniques developed in this paper can be adapted to the context of partial Kripke structures.

A crucial aspect of our model-checking framework is that it not only permits the abstraction of complete programs, but also the refinement of partially specified abstract programs by more concrete abstract programs, to adequately accommodate the incremental process of building more detailed abstractions by successive approximations, as used in SLAM or Bandera for instance.
We develop an expressive and flexible relational calculus for the sound specification of MTSs as abstractions. This calculus adapts the definitions of [12,13] to partially specified systems and is complete in the sense that it can specify every refinement of MTSs. In particular, any abstract interpretation of data values extends to a relational abstraction expressible in the calculus. In this calculus, we specify two standard abstractions of abstract interpretation [10], namely predicate abstraction [17,14,32] and cartesian abstraction [3,1] (also known as “independent attribute analysis”), and describe their implementations:

- When applied to may-transition relations only, the specifications and implementations we present coincide with traditional “conservative” abstraction.
- We discuss how these specifications can be implemented using standard tools (automatic theorem proving for quantifier-free first-order logic and BDDs), except for the use of Ternary Decision Diagrams (TDDs) [31] for cartesian abstraction. We show that the computational cost of constructing a must-transition relation is the same as that of constructing a may-transition relation.
- We show that our implementations are sound and (relatively) complete\(^1\) with respect to their specifications in our calculus. Moreover, they conveniently model approximations in calls to a theorem prover as under-approximations of must-transitions and over-approximations of may-transitions.
- We prove that abstraction refinement is incremental for MTSs built using cartesian abstraction.

Predicate abstraction [17,14,32] is based on a set of predicates, \(\Phi \) \(\equiv \) \{\(\phi_1, \ldots, \phi_n \)\}, typically quantifier-free formulas of first-order logic (e.g., \(x = y+1 \) \(\lor \) \(x < y-5 \)). An abstract state is induced by \(n \)-ary conjunctions, called monomials, with each predicate \(\phi_i \) contributing either \(\phi_i \) or \(\neg \phi_i \). This abstraction identifies concrete states that satisfy the same predicates in \(\Phi \).

Given a set of states represented by a formula of quantifier-free first-order logic \(\psi \), the set \(\psi' \) of abstract may-successors states is defined as the disjunction of all monomials \(\eta \) such that \(\text{post}(\psi) \land \eta \) is satisfiable [17,14].\(^2\) Computing \(\psi' \) can be done using automatic theorem proving for quantifier-free formulas, and [14] shows how to use a representation based on BDDs [6] at a propositional level to compactly represent the construction of \(\psi' \) as a disjunction of conjunctions. We can compute must-transitions by dualizing, in a logical sense, the above construction: for \(\psi \) as above, we show that the set of must-successors is the disjunction of all monomials \(\eta \) such that \(\psi \land \text{pre}(\neg \eta) \) is unsatisfiable.\(^3\)

Unfortunately, this approach is not incremental: adding a new predicate \(\phi_{n+1} \) to \(\Phi \) may not yield a refinement of the abstraction, and hence the entire abstraction may need to be recomputed. This shortcoming can be eliminated at the expense of enlarging the abstract state space: states are now built as disjunctions of abstract states from predicate abstraction. Using disjunctions can yield

\(^1\) Which are perfors relative to the completeness of the underlying theorem prover.
\(^2\) \(\text{post}(\psi) \) is the set of immediate successor states of states satisfying \(\psi \).
\(^3\) \(\text{pre}(\neg \eta) \) is the weakest precondition of states satisfying \(\neg \eta \).
a must-component that is more precise than the one obtained from predicate abstraction, but can also be much more expensive: for \(n \) predicates, an abstraction using disjunctions can have \(2^n \) states. This tradeoff between cost and precision is discussed in [8].

This limitation motivates the next layer of approximation: cartesian abstraction, which can be used on top of predicate abstraction in order to approximate sets of \(n \)-tuples by \(n \)-tuples of sets. We modify the work of [14] to synthesize abstract states and abstract may-successors for this composite abstraction, replacing BDDs by TDDs [31]. Then we construct must-transitions by dualizing, in the logical sense, the construction of may-transitions using cartesian abstraction.

We complete this framework with an algorithm for model checking any modal mu-calculus formula on an abstract MTS. Following [4,5], any (three-valued) model-checking problem on MTSs can be reduced to two traditional (two-valued) model-checking problems on regular LTSs.

The rest of the paper is organized as follows. Section 2 discusses background material on MTSs. Section 3 formally develops a relational calculus of abstractions and proves a basic result that permits the methods of analysis of this paper. In Section 4, we apply these methods to predicate and cartesian abstraction and prove that cartesian abstraction allows for incremental refinement. Section 5 discusses three-valued model-checking for MTSs, and Section 6 concludes.

2 Background: Abstract Modal Transition Systems

MTSs [24,23] are defined from labeled transition systems.

Definition 1 (Labeled transition systems). A labeled transition system [27] (LTS) is a tuple \(\mathcal{K} = (\Sigma_K, \text{act}, \rightarrow) \), where \(\Sigma_K \) is a set of states, \(\text{act} \) is a set of action symbols, and \(\rightarrow \subseteq \Sigma_K \times \text{act} \times \Sigma_K \) is a transition relation. We call \(\mathcal{K} \) finitely-branching if for each \(s \in \Sigma_K \), the set \(\{ s' \in \Sigma_K \mid \exists \alpha \in \text{act}: (s, \alpha, s') \in \rightarrow \} \) is finite.

A strategy to reason about a complex program represented by an LTS \(C \) consists of (i) generating from \(C \) an abstract LTS \(\mathcal{A} \), (ii) checking whether \(\mathcal{A} \) satisfies a behavioral property \(\phi \), and (iii) transferring those results to the original program \(C \). For (i) and (iii), standard practice [10,7] is to construct some \(\mathcal{A} \) such that the initial states of \(C \) and \(\mathcal{A} \) are related by a **simulation**.

Definition 2 (Simulation). A relation \(\rho \subseteq \Sigma_C \times \Sigma_A \) is a simulation [26] iff for any \(c \rho a \) and \(c \rightarrow^\alpha c' \) there is some \(a' \in \Sigma_A \) such that \(a \rightarrow^\alpha a' \) and \(c' \rho a' \).

The temporal logic \(L_\nu \) whose abstract syntax is

\[
\phi ::= \ttt \mid \ff \mid Z \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid (\forall \alpha)\phi \mid \nu Z \phi
\]

with \(\alpha \in \text{act} \), variables \(Z \in \text{Var} \) for the greatest fixed point \(\nu Z \phi \), and usual semantics, expresses **universal properties** [29]. We assume here the semantics
of (closed) formulas over LTSs is defined as sets of states. For instance, the semantics of \((\forall\alpha)\phi\) is:

\[
\| (\forall\alpha)\phi \| \overset{\text{def}}{=} \{ s \in \Sigma_K \mid \text{for all } s' \in \Sigma_K, s \xrightarrow{\alpha} s' \text{ implies } s' \in | \phi | \}.
\]

A simulation relation \(c \rho a\) ensures that \(a \in \| \phi \|\) (read “\(a\) satisfies \(\phi\)”) implies \(c \in \| \phi \|\). Thus, we may verify any universal property \(\phi \in L_\psi\) (such as “For all paths, nothing bad will happen”) at \(c\) by (i) computing an abstract model \(\mathcal{A}\), (ii) establishing a simulation \(\rho\) satisfying \(c \rho a\), and (iii) verifying \(\phi\) at \(a\). Unfortunately, a negative check \(a \not\in \| \phi \|\) does not imply anything about the truth or falsity of \(c \not\in \| \phi \|\). At most, debugging information obtained from such a negative check may be used to construct a more concrete version of \(\mathcal{A}\) (a refinement), hoping that this more precise model either renders a positive check or that refined debugging information eventually “applies” to \(C\) as well.

In this paper, we argue that a better approach consists of using MTs instead of LTSs for representing abstractions of LTSs.

Definition 3 (MTS). A MTS \([24]\) is a pair \(\mathcal{K} = (\mathcal{K}^{\text{must}}, \mathcal{K}^{\text{may}})\), where
\(\mathcal{K}^{\text{must}} = (\Sigma_K, \text{Act}, \rightarrow^{\text{must}})\) and
\(\mathcal{K}^{\text{may}} = (\Sigma_K, \text{Act}, \rightarrow^{\text{may}})\) are LTSs such that
\(\rightarrow^{\text{must}} \subseteq \rightarrow^{\text{may}}\).

An LTS is simply a MTS \(\mathcal{K}\) where \(\mathcal{K}^{\text{must}}\) equals \(\mathcal{K}^{\text{may}}\). The intuition behind the inclusion above is that transitions that are necessarily true (\(\mathcal{K}^{\text{must}}\)) are also possibly true (\(\mathcal{K}^{\text{may}}\)). Reasoning about the existence of transitions of MTs can be viewed as reasoning with a three-valued logic with truth values \text{true}, \text{false}, and \text{unknown} \([4]\): transitions that are necessarily true are \text{true}, transitions that are possibly true but not necessarily true are \text{unknown}, and transitions that are not possibly true are \text{false}.

Definition 4 (Refinement [24]). An MTS \(\mathcal{A}_1\) is a refinement of an MTS \(\mathcal{A}_2\) if there exists a relation \(\rho \subseteq \Sigma_{\mathcal{A}_1} \times \Sigma_{\mathcal{A}_2}\) such that (i) \(\rho\) is a simulation from \(\mathcal{A}_1^{\text{may}}\) to \(\mathcal{A}_2^{\text{may}}\) and (ii) \(\rho\) is a simulation from \(\mathcal{A}_1^{\text{must}}\) to \(\mathcal{A}_2^{\text{must}}\). In that case, we also say that \(\mathcal{A}_2\) is an abstraction of \(\mathcal{A}_1\). We write \(\prec\) for the greatest refinement relation between MTs.

MTSs can be used to both verify and refute any property of the full modal mu-calculus, which is defined as follows \([22]\):

\[
\phi := \texttt{tt} \mid Z \mid \neg \phi \mid \phi_1 \land \phi_2 \mid (\exists \alpha)\phi \mid \mu Z \phi
\]

where \(\alpha \in \text{Act}\), and \(Z \in \text{Var}\) (variable for the least fixed point \(\mu Z\phi\).

Definition 5 (Semantics of modal logic [19]). For a MTS \(\mathcal{K}\) and any modal mu-calculus formula \(\phi\), we define a semantics \(\| \phi \|_\sigma \in \mathcal{P}(\Sigma_K) \times \mathcal{P}(\Sigma_K)\), where \(\mathcal{P}(\Sigma_K)\) is the powerset of \(\Sigma_K\), ordered by set inclusion, \(\sigma: \text{Var} \rightarrow \mathcal{P}(\Sigma_K) \times \mathcal{P}(\Sigma_K)\) is an environment, and \(\| \phi \|_\sigma^{\text{sec}}\) and \(\| \phi \|_\sigma^{\text{pos}}\) are the projection of \(\| \phi \|_\sigma\) to its first and second component, respectively:

1. \(\| \texttt{tt} \|_\sigma \overset{\text{def}}{=} (\Sigma_K, \Sigma_K)\).
2. \(\neg \phi \sigma \stackrel{\text{def}}{=} \langle \Sigma_K \setminus \| \phi \|_{\sigma}^{\text{pos}}, \Sigma_K \setminus \| \phi \|_{\sigma}^{\text{rec}} \rangle; \)
3. \(\phi_1 \land \phi_2 \sigma \stackrel{\text{def}}{=} \langle \phi_1 \|_{\sigma}^{\text{rec}} \cap \| \phi_2 \|_{\sigma}^{\text{pos}}, \phi_1 \|_{\sigma}^{\text{pos}} \cap \| \phi_2 \|_{\sigma}^{\text{pos}} \rangle; \)
4. \(\langle \exists a \rangle \phi \sigma \stackrel{\text{def}}{=} \{ s \in \Sigma_K \mid \text{for some } s', s \rightarrow_{\text{must}}^{a} s' \text{ and } s' \in \| \phi \|_{\sigma}^{\text{rec}}, \}
 \{ s \in \Sigma_K \mid \text{for some } s', s \rightarrow_{\text{may}}^{a} s' \text{ and } s' \in \| \phi \|_{\sigma}^{\text{pos}} \}; \)

The treatment of negation is due to P. Kelb [20] and allows for verifying \(s \in \| \phi \|^{\text{rec}} \) and refuting \(s \in \| \neg \phi \|^{\text{rec}} \) property \(\phi \) at state \(s \). For brevity, we did not present the standard least-fixed point semantics of \(\mu Z \phi \) (e.g., see [19]).

Theorem 1 (Soundness and consistency of semantics [19]). For any MTSs, formulas \(\phi, \psi \) of the modal mu-calculus, and environments \(\sigma \):

1. \(\| \phi \|_{\sigma}^{\text{rec}} \subseteq \| \phi \|_{\sigma}^{\text{pos}} \);
2. \(\| \phi \land \neg \psi \|_{\sigma}^{\text{pos}} = \emptyset \); and \(\| \phi \lor \neg \psi \|_{\sigma}^{\text{rec}} = \Sigma_K \); that is, the semantics is consistent for \(\| \phi \|_{\sigma}^{\text{rec}} \) and “complete” for \(\| \phi \|_{\sigma}^{\text{pos}} \);
3. if \(c \ll a \), then \(a \in \| \phi \|_{\sigma}^{\text{rec}} \) implies \(c \in \| \phi \|_{\sigma}^{\text{pos}} \); and \(a \in \| \phi \|_{\sigma}^{\text{pos}} \) implies \(a \in \| \phi \|_{\sigma}^{\text{rec}} \); that is, verification and refutation of \(\phi \) are sound;
4. For LTSSs, \(\| \phi \|_{\sigma}^{\text{rec}} = \| \phi \|_{\sigma}^{\text{pos}} \) and corresponds to the standard semantics for labeled transition systems.

The semantics \(\| \phi \|_{\sigma}^{\text{rec}} \) (without negation and fixed points) is the one given by Larsen [23]; it produces a logical characterization of refinement for finitely branching\(^4\) MTSs [23]. Since \(s \not\in \| \phi \|_{\sigma}^{\text{pos}} \) iff \(s \in \| \neg \phi \|_{\sigma}^{\text{rec}} \), this logical characterization can be extended to the full mu-calculus (including negation). We thus obtain that \(c \ll a \) iff for all \(\phi \) of the modal mu-calculus, \(a \in \| \phi \|_{\sigma}^{\text{rec}} \Rightarrow c \in \| \phi \|_{\sigma}^{\text{pos}} \).

3 A Relational Calculus for Abstract MTSs

In [12], abstract interpretation frameworks are systematically defined through description relations \(\rho: \Sigma_C \times \Sigma_A \) with suitable properties. We provide a general calculus for specifying abstract MTSs based on such relations.

Definition 6 (Relational abstraction). Let \(A_1 = (A_1^{\text{must}}, A_1^{\text{may}}) \) be an MTS. Given a set \(\Sigma_{A_1} \) of abstract states and a total relation\(^5\) \(\rho: \Sigma_{A_1} \times \Sigma_{A_1} \), we define \(A_2 = (\Sigma_{A_2}, \text{act}, \rightarrow_{\text{must}}^{a}, \rightarrow_{\text{may}}^{a}) \) as follows:

- \(a_2 \rightarrow_{\text{must}}^{a} a_2' \) iff for all \(a_1 \in \Sigma_{A_1} \) with \(a_1 \rho a_2 \) there exists \(a_1' \in \Sigma_{A_2} \) such that \(a_1' \rho a_2' \) and \(a_1 \rightarrow_{\text{must}}^{a} a_1' \);
- \(a_2 \rightarrow_{\text{may}}^{a} a_2' \) iff there exist \(a_1 \in \Sigma_{A_1} \) and \(a_1' \in \Sigma_{A_1} \) such that \(a_1 \rho a_2, a_1' \rho a_2' \), and \(a_1 \rightarrow_{\text{may}}^{a} a_1' \).

This definition is a tool to specify abstract MTSs. Its two components are similar to the universal abstraction \(\alpha^{\exists} \) and the (dual) existential abstraction \(\alpha^{\exists} \) defined in [11], and to the relations \(R^{\exists} \) and \(R^{\exists} \) in [12].

\(^4\) May-components and must-components are finitely-branching.

\(^5\) That is, \(\forall a_1 \in \Sigma_{A_1} \exists a_2 \in \Sigma_{A_2} : a_1 \rho a_2 \) \& \(\forall a_2 \in \Sigma_{A_2} \exists a_1 \in \Sigma_{A_1} : a_1 \rho a_2 \).
Lemma 1. Given A_1 and A_2 as above, A_2 is a MTS and ρ is a refinement.

Totality is a natural condition in applications and Definition 6 can express stepwise abstractions, products, sums, etc; moreover, it translates to other frameworks—e.g., the one based on Galois connections [10]—in the manner described in [12].

The specification in Definition 6 is also complete: given an MTS A_1, any abstraction A_2 of A_1 via a total refinement relation \prec can be constructed using Definition 6 by choosing ρ as \prec. The following example illustrates Definition 6.

Example 1. Let A_1 be a complete MTS (A_1^{may} equals A_1^{must}) whose infinite state space is given by all possible valuations of three integer variables x, y, and z. Any state c is of the form $\{x \mapsto i, y \mapsto j, z \mapsto k\}$, for some integers i, j, k. Let us assume that transitions of A_1 are those induced by the single assignment statement $x = z$, e.g., there is a transition from state c above to state $c' = \{x \mapsto k, y \mapsto j, z \mapsto k\}$.

The predicates $\phi_1 \overset{def}{=} \text{odd}(x)$, $\phi_2 \overset{def}{=} (y > 0)$, and $\phi_3 \overset{def}{=} (z < 0)$ induce an equivalence relation on the states of A_1: two states are equivalent if they agree on all three predicates. Let Σ_{A_2} be the set of all sets of equivalence classes of states of A_1. Therefore, states of A_2 are representable as boolean formulas built from the ϕ_i’s. By Definition 6, there is a may-transition from a to a' in Σ_{A_2} iff there are $c \in a$ and $c' \in a'$ such that c has a transition to c' in A_1. Dually, there is a must-transition from a to a' iff, for all $c \in a$, there exists $c' \in a'$ such that c has a transition to c' in A_1.

For instance, there is (i) a may-transition from the state $\phi_1 \land \phi_2 \land \phi_3$ to the states $\phi_1 \land \phi_2 \land \phi_3$ and $\neg \phi_1 \land \phi_2 \land \phi_3$; (ii) a must-transition from $\phi_1 \land \phi_2 \land \phi_3$ to the disjunction of monomials $(\phi_1 \land \phi_2 \land \phi_3) \lor (\neg \phi_1 \land \phi_2 \land \phi_3)$; but (iii) no must-transition from $\phi_1 \land \phi_2 \land \phi_3$ to any monomial, e.g., $\phi_1 \land \phi_2 \land \phi_3$ or $\neg \phi_1 \land \phi_2 \land \phi_3$.

4 Implementation of Relationally Specified MTSs

In this section, we consider in turn predicate abstraction (also called “boolean abstraction”) and cartesian abstraction. When applied to may-transition relations only, the specifications and implementations we present coincide with traditional “conservative” abstractions. We implement these specifications with standard tools (automatic theorem-proving for quantifier-free first-order logic and BDDs), except for the use of TDDs. We show that the computational cost of constructing a must-transition relation is the same as that of constructing a may-transition relation. We then show that our implementations are sound and complete (relatively to the completeness of the underlying theorem prover) with respect to their specifications. Moreover, they conveniently model approximations in calls to a theorem prover as under-approximations of must-transitions and over-approximations of may-transitions. Importantly, we prove that abstraction refinement is incremental for MTSs built using cartesian abstraction.
Notation. For any predicate \(\eta \) on a set \(\Sigma_S \) of states, for any label \(\alpha \in \text{Act} \), the post operator [10] and weakest precondition [15] are defined as

\[
\text{post}_\alpha(\eta) \overset{\text{def}}{=} \{ s' \in \Sigma_S \mid \exists s \in \Sigma_S: s \models \eta, s \rightarrow^{\alpha} s' \}
\]

\[
\text{p\text{re}}_\alpha(\eta) \overset{\text{def}}{=} \{ s \in \Sigma_S \mid \forall s' \in \Sigma_S: s \rightarrow^{\alpha} s' \text{ implies } s' \models \eta \}.
\]

These operators satisfy several interesting relationships [10]. Here we only use the property that, for any predicates \(\psi, \eta \) on states, \(\text{post}_\alpha(\psi) \land \eta \) is satisfiable if and only if \(\psi \land \lnot \text{p\text{re}}_\alpha(\lnot \eta) \) is satisfiable.

Methodological assumptions. We assume that an abstract program is built by converting each program statement from a transformer operating on concrete states to a transformer operating on abstract states, as illustrated in Example 1. For notational convenience, we focus on what follows on the abstraction of a single program statement, and hence consider MTSs, post, and p\text{re} without explicit action labels. For a given program statement and a quantifier-free formula \(\eta \), we assume that \(\text{p\text{re}}(\eta) \) is quantifier-free as well. This is the case for usual programming language constructs [17] and enables the use of decision procedures as implemented in tools such as SVC [14].

Predicate Abstraction. Predicate abstraction [17,14,32] collapses an infinite-state LTS into a finite-state MTS defined by choosing finitely many quantifier-free formulas of first-order logic.

Specification. The abstract states in the predicate abstraction are built out of monomials over predicates. Each abstract state corresponds to a set of concrete states that satisfy the same set of predicates. Formally, given a finite set of quantifier-free formulas of first-order logic, \(\Phi = \{ \phi_1, \phi_2, \ldots, \phi_n \} \), and a “bit-vector” \(b \in \{0,1\}^n \), we write \(\langle b, \Phi \rangle \) for a monomial whose \(i \)th conjunct is \(\phi_i \) if \(b_i = 1 \), and \(\lnot \phi_i \) otherwise.

Definition 7 (Predicate abstraction). Given an LTS \(S \) and a finite set \(\Phi = \{ \phi_1, \phi_2, \ldots, \phi_n \} \) of quantifier-free formulas of first-order logic, we derive a finite-state abstract MTS \(B_\Phi \) following Definition 6 (\(A_1 \) is \(S \) and \(A_2 \) is \(B_\Phi \)) in such a way that:

\[
- \rho \overset{\text{def}}{=} \rho_b^S \subseteq \Sigma_S \times \{0,1\}^n, \text{ where } \rho_b^S(b) = \{ s \mid s \models \Phi \}; \text{ and}
- \Sigma_{B_\Phi} \overset{\text{def}}{=} \{ b \in \{0,1\}^n \mid \exists s \in \Sigma_S: s \models \rho_b^S(b) \text{ for some } \text{ for some } s \in \Sigma_S \}, \text{ which makes } \rho_b^S \text{ total.}
\]

Implementing may-successors of a predicate abstraction. Current tool-supported predicate-abstraction frameworks [17,14,32,9,2,1] can be viewed as constructing an abstraction of the may-component of \(B_\Phi \) defined above. We now review how to compute the set of abstract may-successors for a single program statement.

Following [14], we use BDDs over boolean variables \(x_1, x_2, \ldots, x_n \) as representations of such sets. If \(\psi \) is a boolean combination of \(\{ \phi_i \mid m \leq i \leq n \} \), we compute in (3) below a BDD, denoted by \(H^{\text{may}}(\psi, \text{true}, m) \), for representing the
set of may-successors of \(\psi \). The definition of \(H^{\text{may}} \) is essentially the definition of \(H \) in [14] where \(\text{post}(\psi) \land \eta \) is replaced by \(\psi \land \neg \text{pre}(\neg \eta) \) (to facilitate dualizing this construction later).

\[
H^{\text{may}}(\psi, \eta, i) \overset{\text{def}}{=} \left\{ \begin{array}{ll}
(x_i \land H^{\text{may}}(\psi, \eta \land \phi_i, i + 1)) \\
\lor (\neg x_i \land H^{\text{may}}(\psi, \eta \land \neg \phi_i, i + 1)) & \text{if } 0 < i \leq n,
1 & \text{if } i = n + 1 \text{ and } \psi \land \neg \text{pre}(\neg \eta) \text{ is satisfiable},
0 & \text{if } i = n + 1 \text{ and } \psi \land \text{pre}(\neg \eta) \text{ is unsatisfiable}.
\end{array} \right.
\] (3)

The BDD in (3) can be computed using standard BDD operations [6] plus the optimizations discussed in [14], while the satisfiability checks can be computed by calling a theorem prover. Unwinding the recursion in the definition above, it is clear that the set of may-successors of \(\psi \) computed by \(H^{\text{may}} \) is:

\[
\text{next}(\psi)^{\text{may}}_b \overset{\text{def}}{=} \{ b' \in \Sigma_B \mid \psi \land \neg \text{pre}(\neg \eta) \text{ is satisfiable} \}. \] (4)

Implementing must-successors of a predicate abstraction. The logical duality of may versus must is captured by replacing the satisfiability check of \(\psi \land \neg \text{pre}(\neg \eta) \) in (3) by the unsatisfiability check of \(\psi \land \text{pre}(\neg \eta) \) in the following equation (5).

\[
H^{\text{must}}(\psi, \eta, i) \overset{\text{def}}{=} \left\{ \begin{array}{ll}
(x_i \land H^{\text{must}}(\psi, \eta \land \phi_i, i + 1)) \\
\lor (\neg x_i \land H^{\text{must}}(\psi, \eta \land \neg \phi_i, i + 1)) & \text{if } 0 < i \leq n,
1 & \text{if } i = n + 1 \text{ and } \psi \land \text{pre}(\neg \eta) \text{ is unsatisfiable},
0 & \text{if } i = n + 1 \text{ and } \psi \land \text{pre}(\neg \eta) \text{ is satisfiable}.
\end{array} \right.
\] (5)

Thus, the set of must-successors of \(\psi \) represented by the BDD \(H^{\text{must}}(\psi, \text{true}, m) \) is:

\[
\text{next}(\psi)^{\text{must}}_b \overset{\text{def}}{=} \{ b' \in \Sigma_B \mid \psi \land \text{pre}(\neg \eta) \text{ is unsatisfiable} \}. \] (6)

We now show that the BDDs computed by \(H^{\text{may}} \) and \(H^{\text{must}} \) represent exactly the transitions specified in Definition 7.

Theorem 2 (Soundness and completeness).

- \(b \xrightarrow{\text{may}} b' \) in \(B_\Phi \) iff \(b' \in \text{next}(\langle b, \Phi \rangle)^{\text{may}}_b \).
- \(b \xrightarrow{\text{must}} b' \) in \(B_\Phi \) iff \(b' \in \text{next}(\langle b, \Phi \rangle)^{\text{must}}_b \).

Proof. The proof follows from the direct application of the definitions and is omitted here due to space constraints.

Cost. In the worst case, the computation of \(H^{\text{may}}(\langle b, \Phi \rangle, \text{true}, m) \) makes \(O(2^n) \) calls to the theorem prover. Similarly, the computation of \(H^{\text{must}}(\langle b, \Phi \rangle, \text{true}, m) \) makes at most \(O(2^n) \) calls to the theorem prover. Hence, the complexity of computing \(H^{\text{must}} \) is the same as the complexity of computing \(H^{\text{may}} \).

Note that optimizations for computing \(H^{\text{may}} \) discussed in [14] can also be used when computing \(H^{\text{must}} \). Our algorithm also accommodates the complexity of theorem-proving by allowing the sound over-approximation of \(H^{\text{may}} \) and
under-approximation of H^must as follows: in both cases, simply convert the absence of an answer, when truncating the computation performed by the satisfiability checker, into “satisfiable”.

Predicate-Cartesian Abstraction. Unfortunately, predicate abstraction of MTs is not incremental: adding a new predicate ϕ_{n+1} to Φ may not yield a refinement of the abstraction, and hence the entire abstraction may need to be recomputed. This is illustrated by the following example.

Example 2. Revisiting Example 1, if $\Phi = \{\phi_2, \phi_3\}$, then B_Φ has four states, each with a must-transition to itself. However, adding the predicate ϕ_1 to Φ, there are no must-transitions from the abstract state $\phi_1 \land \phi_2 \land \phi_3$ (111) in $B_{\{\phi_1\} \cup \Phi}$. This is quite unfortunate: the information about variable y is lost even though y is absent from the assignment $x = z$. But in Example 1 we saw that there is a must-transition from $\phi_1 \land \phi_2 \land \phi_3$ to the disjunction $(\phi_1 \land \phi_2 \land \phi_3) \lor (\neg \phi_1 \land \phi_2 \land \phi_3)$ that correctly captures the “absence of effect” on y.

Computing must-transitions with abstract states of the above kind can be expensive: given n predicates, there are a possible 2^2^n such states. This motivates our next topic: cartesian abstraction.

Specification. The basic idea behind cartesian abstraction is to approximate sets of tuples by a tuple of sets. For instance, a set $\{(0,1), (1,1)\}$ is represented by $\{(\ast,1)\}$, where \ast is used as a wildcard for different values (such as 0 and 1 in this example). Formally, given a finite set $\Phi = \{\phi_1, \phi_2, \ldots, \phi_n\}$ of quantifier-free formulas of first-order logic and a “tri-vector” $c \in \{0,1,\ast\}^n$, we write $\langle c, \Phi \rangle$ for a monomial whose ith conjunct is ϕ_i if $c_i = 1$, $\neg \phi_i$ if $c_i = 0$, and true otherwise. Abstract states in C_Φ are built out of “tri-vectors” of length n.

Definition 8 (Predicate-cartesian abstraction). Given an LTS S and a finite set $\Phi = \{\phi_1, \phi_2, \ldots, \phi_n\}$ of quantifier-free formulas of first-order logic, we derive a finite-state abstract MT C_Φ following Definition 6 (A_1 is S and A_2 is C_Φ) in such a way that:

\[
\rho^\Phi = \rho^\Phi \land \rho^\Phi \subseteq \Sigma_S \times \{0,1,\ast\}^n, \text{ where } b \rho^\Phi c \iff \forall 1 \leq i \leq n : [c_i \neq \ast] \Rightarrow b_i = c_i; \text{ and}
\]

\[
\Sigma_C^\Phi = \{c \in \{0,1,\ast\}^n \mid b \rho^\Phi c \text{ for some } b \in \Sigma_B\}, \text{ which makes } \rho^\Phi \text{ total.}
\]

The symbol \ast means “don’t care” in the above definition. It is easy to show that, by construction, we have:

\[
s(\rho^\Phi \circ \rho^\Phi) c \iff s \models \langle c, \Phi \rangle.
\]

(7)

Note that the abstract MT C'_Φ obtained by abstracting B_Φ (whose states are vectors of n-bits) with ρ^Φ is typically less precise than C_Φ. For instance, in the case of Examples 1 and 2 again, C'_Φ would not contain any must-transition from state 111 (i.e., $\phi_1 \land \phi_2 \land \phi_3$), while C_Φ does contain a must-transition from 111 to state \ast11.
The MTS C_Φ supports an approximate union operation, defined using the point-wise application of Kleene’s alignment operator [21]: $c \cup c' \overset{\Delta}{=} c_i$ if $c_i = c'_i$ and $*$ otherwise. This operation thus approximates disjunctions (sets) of monomials by tri-vectors. As previously mentioned, cartesian abstraction allows for incremental abstraction refinement:

Theorem 3 (Incremental refinement). For $\Phi = \{\phi_1, \phi_2, \ldots, \phi_n\}$ and $\Psi = \Phi \cup \{\phi_{n+1}, \phi_{n+2}, \ldots, \phi_{n+m}\}$, the MTS C_Φ is a refinement of the MTS C_Ψ.

Proof. The refinement $\rho \subseteq \Sigma_C \times \Sigma_{C_\Psi}$ is given by $\{(c', c) \mid c$ is a prefix of $c'\}$.

Implementing may-successors of a predicate-cartesian abstraction. Instead of representing the abstract post-operator with a BDD as in the predicate abstraction case, we now use a Ternary Decision Diagram [31], writing $[x=v]$ for the replacement of variable x with value $v \in \{0, 1, *\}$:

$$G^\text{may}(\psi, \eta, i) \overset{\Delta}{=} \begin{cases} ([x_i/1] \land G^\text{may}(\psi, \eta \land \phi_i, i + 1)) \lor \lnot([x_i/0] \land G^\text{may}(\psi, \eta \land \neg \phi_i, i + 1)) & \text{if } 0 < i \leq n, \\ 1 & \text{if } i = n + 1 \text{ and } \psi \lor \neg \Phi(\neg \eta) \text{ is satisfiable,} \\ 0 & \text{if } i = n + 1 \text{ and } \psi \land \neg \Phi(\neg \eta) \text{ is unsatisfiable.} \end{cases}$$

The function G^may essentially computes the abstract post-operator of SLAM [1]. Unwinding the recursion in the above definition, the set of may-successors of ψ represented by the TDD $G^\text{may}(\psi, \text{true}, m)$ is:

$$\text{next}(\psi)^\text{may}_c \overset{\Delta}{=} \{c' \in \Sigma_C \mid \psi \land \neg \Phi(\neg \eta) \text{ is satisfiable} \}. \quad (9)$$

Implementing must-successors of a predicate-cartesian abstraction. The TDD $G^\text{must}(\psi, \text{true}, m)$, defined below, represents the set of must-successors of ψ. Similar to our presentation of predicate abstraction, we are capturing the logical duality of may versus must by replacing the satisfiability check of $\psi \land \neg \Phi(\neg \eta)$ by the unsatisfiability check of $\psi \land \neg \Phi(\neg \eta)$ in the following equation:

$$G^\text{must}(\psi, \eta, i) \overset{\Delta}{=} \begin{cases} ([x_i/1] \land G^\text{must}(\psi, \eta \land \phi_i, i + 1)) \lor ([x_i/0] \land G^\text{must}(\psi, \eta \land \neg \phi_i, i + 1)) & \text{if } 0 < i \leq n, \\ 1 & \text{if } i = n + 1 \text{ and } \psi \land \Phi(\neg \eta) \text{ is unsatisfiable,} \\ 0 & \text{if } i = n + 1 \text{ and } \psi \land \Phi(\neg \eta) \text{ is satisfiable.} \end{cases}$$

Again, by unwinding the recursion, the set of must-successors of ψ represented by the TDD $G^\text{must}(\psi, \text{true}, m)$ is thus defined by:

$$\text{next}(\psi)^\text{must}_c \overset{\Delta}{=} \{c' \in \Sigma_C \mid \psi \land \Phi(\neg \eta) \text{ is unsatisfiable} \}. \quad (11)$$

The following theorem states that the TDDs computed by G^may and G^must represent exactly the transitions specified in Definition 8.

Theorem 4 (Soundness and completeness).

- $c \overset{\text{may}}{\rightarrow} c'$ in C_Φ iff $c' \in \text{next}(c, \Phi)^\text{may}$;
- $c \overset{\text{must}}{\rightarrow} c'$ in C_Φ iff $c' \in \text{next}(c, \Phi)^\text{must}$.

Proof. Similar to the proof of Theorem 2.
Cost. In the worst case, the computation of $G^{\text{may}}((c, \Phi), \text{true}, m)$ makes $O(3^n)$ calls to the theorem prover. Similarly, the computation of $G^{\text{must}}((c, \Phi), \text{true}, m)$ makes at most $O(3^n)$ calls to the theorem prover. Therefore, the complexity of computing G^{must} is the same as the complexity of computing G^{may}.

Note that the heuristics discussed in [1] for approximating the calculation of $G^{\text{may}}((c, \Phi), \text{true}, m)$ by restricting the expansion of the recursion to a fixed depth (rather than n) can be applied when computing $G^{\text{must}}((c, \Phi), \text{true}, m)$ as well. Again, the absence of answers from the theorem prover for satisfiability checks can be interpreted as “satisfiable” to yield a sound over-approximation of G^{may} and under-approximation of G^{must}.

5 Three-valued Model Checking on MTSs

The automatic-abstraction algorithms of the previous section can be used to generate a MTS A_2 which, by construction, is guaranteed to be an abstraction (as defined in Definition 4) of a given, possibly initial and concrete, system A_1. By Theorem 1, we can check a modal mu-calculus formula ϕ on A_1 by analyzing A_2 instead, resulting in three possible answers: either (i) ϕ is necessarily true on A_2 — its initial state is contained in $\neg {\phi}^{\text{true}}$ — and hence ϕ holds for A_1 (the answer is true), or (ii) ϕ is only possibly true on A_2 — its initial state is contained in $\neg {\phi}^{\text{pos}}$ only — and whether ϕ holds on A_1 is unknown (the answer is unknown), or (iii) ϕ is not possibly true on A_2 — its initial state is not contained in $\neg {\phi}^{\text{pos}}$ — and ϕ does not hold on A_1 (the answer is false). We are thus left with a three-valued model-checking problem on MTSs which, following [5], can be reduced to two model-checking problems on LTs as follows.

First, we rewrite formula ϕ to a formula ϕ^+ in positive normal form defined over all the clauses of (1) plus (2) by pushing all negations in ϕ inwards so that they apply only to tt or ff in ϕ^+. This is done using the classic rewrite rules: $\neg(\neg\phi) = \phi$, $\neg(\phi_1 \land \phi_2) = (\neg\phi_1) \lor (\neg\phi_2)$, $\neg(\exists\alpha\phi) = (\forall\alpha)(\neg\phi)$, and $\neg(\mu\alpha\phi) = \nu\alpha(\neg\phi)$. Then, we translate ϕ^+ into a formula $T(\phi)$ by applying the following translation rules: for all $\alpha \in \text{Act}$, replace all occurrences of $(\forall\alpha)$ in ϕ^+ by $(\forall\alpha)\phi$ and replace all occurrences of $(\exists\alpha)$ in ϕ^+ by $(\exists\alpha)\phi$.

Second, from the MTS $A_2 = (\Sigma_{A_2}, \text{Act}, \rightarrow_{\text{must}}, \rightarrow_{\text{may}})$, we define two LTs $A^p_{2\text{ess}}$ and $A^p_{2\text{opt}}$, representing respectively the pessimistic and optimistic interpretations of A_2 (see [5]). These two LTs are defined over the set

$$\text{Act}^c \overset{\text{def}}{=} \{\alpha_v \mid \alpha \in \text{Act}\} \cup \{\alpha_3 \mid \alpha \in \text{Act}\}$$

(12)

of action symbols. Precisely, we define

$$A^p_{2\text{ess}} = (\Sigma_{A_2}, \text{Act}^c, \rightarrow_{\text{ess}})$$

with

$$\begin{align*}
(s, \alpha_v, s') &\in \rightarrow_{\text{ess}} \text{ if } (s, \alpha, s') \in \rightarrow_{\text{may}} \\
(s, \alpha_3, s') &\in \rightarrow_{\text{ess}} \text{ if } (s, \alpha, s') \in \rightarrow_{\text{must}}
\end{align*}$$

(13)

(14)

and we define

$$A^p_{2\text{opt}} = (\Sigma_{A_2}, \text{Act}^c, \rightarrow_{\text{opt}})$$

with

$$\begin{align*}
(s, \alpha_v, s') &\in \rightarrow_{\text{opt}} \text{ if } (s, \alpha, s') \in \rightarrow_{\text{must}} \\
(s, \alpha_3, s') &\in \rightarrow_{\text{opt}} \text{ if } (s, \alpha, s') \in \rightarrow_{\text{may}}.
\end{align*}$$

(15)

(16)
Finally, we model-check the modal mu-calculus formula $T(\phi)$ on the LTSs A_2^{phys} and A_2^{opt}, and combine the results as specified in the following theorem.

Theorem 5 (Correctness of model checking algorithm). Given a MTS A_2 and a modal mu-calculus formula ϕ, let $T(\phi)$, A_2^{phys}, and A_2^{opt} be the formula and the two LTSs (respectively) as defined above. For any state $s \in \Sigma_{A_2}$, we then have

1. $s \in \phi$ \iff $(A_2^{\text{phys}}, s) \models T(\phi)$
2. $s \in \phi$ \iff $(A_2^{\text{opt}}, s) \models T(\phi)$.

Proof. By induction on the structure of ϕ.

The previous theorem is similar to Theorem 3 of [5]. It reduces three-valued model checking of MTSs to two traditional (two-valued) model-checking problems on regular LTSs, namely $(A_2^{\text{phys}}, s) \models T(\phi)$ and $(A_2^{\text{opt}}, s) \models T(\phi)$. Since the transformations performed to obtain $T(\phi)$, (A_2^{phys}, s), and (A_2^{opt}, s) can be done in constant space and time linear in the size of the formula and MTS respectively, three-valued model checking on MTSs has the same time and space complexity as two-valued model checking on LTSs. Moreover, the problem can be solved in practice using existing model-checking tools for LTSs, with all the optimizations that these tools may already implement. In particular, if the refined system A_1 is concrete and composed of multiple concurrent LTSs or of recursive procedures (LTSs extended with a “call-stack”), the abstraction algorithms of the previous section will preserve the architecture of A_1 when generating A_2, and existing tools for model-checking concurrent or pushdown systems can be applied to A_2^{phys} and A_2^{opt}.

6 Conclusions

We developed a framework for automatic program abstraction based on modal transition systems. This framework can be used for model-checking any formula of the modal mu-calculus, and is also applicable to the verification of concurrent and pushdown systems. It uses cartesian abstraction, implemented with TDDs and quantifier-free first-order-logic theorem-proving, to extend existing predicate-abstraction techniques to the verification of formulas containing arbitrarily nested path quantifiers. Cartesian abstraction has no significant cost overhead and is compatible with the standard incremental refinement process for adding more predicates.

Acknowledgments

We wish to thank Glenn Bruns and David Schmidt for inspiring discussions and helpful comments.
References