Computing Publications

Publications Home » Sojourn time distributions in mod...

Sojourn time distributions in modulated G-queues with batch processing

Peter G. Harrison, Harf Zatschler

Conference or Workshop Paper
1st International Conference on Quantitative Evaluation of Systems (QEST) 2004, University of Twente
September, 2004
Abstract

Quantiles on response times, given by probability distribution functions, are a critical metric for quality of service in computer networks as well as many other logistical systems. We derive explicit expressions in the time domain for the sojourn (or response) time probability distribution in a modulated, batched G-queue. More precisely, this queue is Markovian with arrival streams of both positive (normal) and negative customers. Arrivals occur in batches of geometric size and service completions also release batches of geometric size, truncated at the current queue length. All the queue's parameters are modulated by an independent, stationary, continuous time Markov chain. This highly complex queue is able to model many characteristics observed in modern distributed computer systems and telecommunications traffic, such as burstiness, autocorrelation and failures. However, previously, sojourn time distributions have not been obtained even for an MMPP/M/1 queue. We simplify a previous result for their Laplace transform which we then show takes a rational form and can be inverted to give a mixture of exponential and Erlang distributions, possibly modified with sine-factors. An algorithm is described which generates these functions from any given model parameterization and is applied to a range of problems to illustrate graphically the potentially diverse density functions that ensue.

Keywords
AESOP
PDF of full publication (144 kilobytes)
(need help viewing PDF files?)
GZipped Postscript of full publication (125 kilobytes)
(need help viewing GZipped Postscript files?)
BibTEX file for the publication
N.B.
Conditions for downloading publications from this site.
 

pubs.doc.ic.ac.uk: built & maintained by Ashok Argent-Katwala.