Computing Publications

Publications Home » Automatic tracking of the aorta i...

Automatic tracking of the aorta in cardiovascular MR images using deformable models

Daniel Rueckert, P Burger, S. Forbat, RH Mohiaddin, Guang-Zhong Yang

Journal Article
IEEE Transactions on Medical Imaging
Volume 16
Issue 5
pp.581–590
October, 1997
Abstract

Presents a new algorithm for the robust and accurate tracking of the aorta in cardiovascular magnetic resonance (MR) images. First, a rough estimate of the location and diameter of the aorta is obtained by applying a multiscale medial-response function using the available a priori knowledge. Then, this estimate is refined using an energy-minimizing deformable model which the authors define in a Markov-random-field (MRF) framework. In this context, the authors propose a global minimization technique based on stochastic relaxation. Simulated annealing (SA), which is shown to be superior to other minimization techniques, for minimizing the energy of the deformable model. The authors have evaluated the performance and robustness of the algorithm on clinical compliance studies in cardiovascular MR images. The segmentation and tracking has been successfully tested in spin-echo MR images of the aorta. The results show the ability of the algorithm to produce not only accurate, but also very reliable results in clinical routine applications

BibTEX file for the publication
 

pubs.doc.ic.ac.uk: built & maintained by Ashok Argent-Katwala.