
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Type Checking for JavaScript

Christopher Anderson 1,3

Department of Computing, Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, U.K.

Paola Giannini 1,2,4

Dipartimento di Informatica, Università del Piemonte Orientale, Spalto Marengo
33, Alessandria, Italy.

Abstract

JavaScript is a powerful imperative object based language made popular by its
use in web pages. It supports flexible program development by allowing dynamic
addition of members to objects. Code is dynamically typed: a runtime access to a
non-existing member causes an error.

We suggest a static type system for JavaScript that will detect such type errors.
Therefore, programmers can benefit from the flexible programming style offered by
JavaScript and from the safety offered by a static type system.

We demonstrate our type system with a formalism of JavaScript, #1. Our types
are structural. Members of #1 type are classified into definite and potential. A
potential member becomes definite upon assignment. We outline a proof that our
type system is sound.

1 Introduction

JavaScript (see [12]) is a powerful imperative object based language made
popular by its use in web pages. JavaScript supports flexible program devel-
opment by allowing dynamic addition of members to objects.

JavaScript code is embedded directly in web pages and interpreted as the
page is loaded. Code is dynamically typed and if at runtime a field is accessed

1 Work partly supported by DART, European Commission Research Directorates, IST-01-
6-1A
2 MURST Cofin’02 project McTati
3 Email: cla97@doc.ic.ac.uk
4 Email: giannini@mfn.unipmn.it

c©2004 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

C.Anderson et al.

or method called that does not exist then a runtime type error is generated.
When such errors occur the user is usually presented with an error message.

We suggest a static type system for JavaScript that will detect type errors
that are currently only detected at runtime. Therefore, programmers can
benefit from the flexible programming style offered by JavaScript and from the
safety offered by a static type system. We demonstrate our type systems with
a formalism of JavaScript, JS0. JS0 supports the standard JavaScript flexible
features, e.g. functions creating objects, and dynamic addition/reassignment
of fields and methods.

Our type systems tackles the following challenges introduced by the flexible
features of JS0:

• JS0 object structure is determined by assignment of members,

• JS0 objects can have members added to them after they have been created,

• JS0 methods are created by assigning functions to members,

• JS0 methods can be shared among objects, and

• JS0 functions can have three different roles: creating objects, methods of
objects and global functions.

We address these issues with an explicitly typed version of JS0, JST
0 . JST

0 uses
structural types of the form: t = µ α. << m1 : t1 · · ·mn : tn >> #1

#1

This paper is organized as follows. In Section 2 we present an example
introducing the features of JS0 and JST

0 . In Section 3 we define the syntax of
JS0 and its operational semantics, and in Section 4 we give a typed version
of JS0, JST

0 . The proof of soundness JST
0 is outlined in Section 5. Finally, in

Section 6 we compare our work with others and outline our future directions.

2 Example

We start with an example demonstrating the classic untyped style of pro-
gramming seen in JavaScript. In Figure 1 we give an example that describes a
scenario with people and their jobs. We define functions Person, moneyTrans,
employPerson. The code preceded by the comment //Main is the entry point
into the program.

Figure 1 demonstrates:

• creating objects using functions (line 16 and 17),

• implicit creation of members in objects through assignment (lines 2 and 3),

• acquiring methods through assignment of a function to a member (line 3),

• method call, with paul.payMe(10) binding paul to this when moneyTrans

is executed (line 18),

• addition of members after object creation, with employPerson adding mem-
ber boss (line 12), and

2

C.Anderson et al.

• global function call, with employPerson(paul,john) being called without
a receiver (line 18).

We now look at the same example in the context of a typed version of
JavaScript. In the example we use a syntax slightly more liberal from the
syntax of JST

0 , allowing functions with more than one parameter and variable
declarations. Figure 2 gives a typed version of Figure 1 where:

• MT is (<< money : Int >>, Int) → Int, and

• T is µ α. << money : Int, payMe : MT, boss : α? >>.

The first thing to note is that unlike JavaScript for functions there are type
annotations for the formal parameters, (lines 1, 8, 13, and 14), the return type
(lines 1, 8, and 15), and the type of the metavariable this which the function
may be method of (lines 2, 9, and 17). Moreover, we declared the type of the
two variables paul and john (lines 22, and 23).

Secondly, the object types are structural, comprising a list of members each
with their own type. Consider the return type of function Person on line 1:

<< money : Int, payMe : MT, boss : T? >> (1)

Type (1) is the type of an object which has fields money of type Int, payMe
of type MT (as we will #1 later this is a method), and in case it has a field
boss, then the field is an object of type T. The type T:

µ α. << money : Int, payMe : MT, boss : α? >> (2)

is an object type, and has a bound variable α that allows to refer to the whole
type in the member types. In this case boss has type T. The type (2) has
the same members of (1) with the same type.

Members in a type can be annotated with ? indicating a potential member,
as in (1) which is the return type of function Person. When objects are created
using function Person they are given type (1), which allows a member boss

to be added later. This allows objects to evolve in a controlled manner. Note
also, that the type of member boss is (2), that has the same members with
the same type as (1). This captures the requirement that the boss of a person
is also a person.

When a potential member is assigned to, it becomes definite, loosing its ?.
To keep the type system manageable we only track assignments to variables
(formal parameters and this) within the scope of a function. For the effect
of assignments to variables to be visible outside a function they must be re-
turned from the function with the appropriate type. For example, in function
employPerson, the assignment x.boss = y makes boss definite in the type
of x. The return type being << money : Int, payMe : MT, boss : T >> in which
boss has lost the annotation ?.

Functions are given types of the shape #1 where t1 is the type of the
metavariable this, t2 the type of the parameter, and t3 the type of the return

3

C.Anderson et al.

value of the function. For instance, moneyTrans has type MT:

(<< money : Int >>, Int) → Int

saying that the metavariable this is << money : Int >>, the parameter is of
type Int, and it returns an Int.

When a function is used as a method of an object upon calling we check
that the receiver is a subtype of the declared type for this in the function.
For example, with call paul.payMe(10) on line 26 we have that << money :
Int, payMe : MT, boss : T? >> is a subtype of << money : Int >>.

Subtyping, for object types, is based on the structures of the types con-
cerned. For type t to be a subtype of type t′, t must declare at least the mem-
bers defined in t′ with the same types. In case a member is definite in t′, then it
must be definite also in t. We see this with the type, << money : Int, payMe : MT, boss : T >>,
of variable paul being a subtype of << money : Int >>, the type of this de-
clared in moneyTrans. This means that function moneyTrans can be used as
a method of any object whose declared type contains member money of type
Int.

Consider the definition of moneyTrans1 that follows:

function moneyTrans1(x:Int):??
{
this:<< money : Int >>;
this.money = this.money + x;
moneyTrans1;
}

moneyTrans1 returns the function moneyTrans1. To give a type to this func-
tion we have to be able to refer in the return type of the function to the type
of the whole function. To this extent we use, #1, the binder µ α, and give to
moneyTrans1 type:

µ α.(Int, Int) → α

The typed version of moneyTrans1 can be written as follows:

function moneyTrans1(x:Int):µ α.(Int, Int) → α
{
this:<< money : Int >>;
this.money = this.money + x;
moneyTrans1;
}

3 JS0

We have developed JS0 a subset of JavaScript which includes the following
features:

(i) functions used to create objects,

(ii) functions can be aliased and used as members of objects, and

4

C.Anderson et al.

1 function Person(x) {
2 this.money = x;
3 this.payMe = moneyTrans;
4 this
5 }
6

7 function moneyTrans(x) {
8 this.money = this.money + x;
9 }

10

11 function employPerson(x,y) {
12 x.boss = y; x
13 }
14

15 //Main

16 john = new Person(100);
17 paul = new Person(0);
18 paul = employPerson(paul,john); paul.payMe(10); paul.boss

Fig. 1. Untyped JS0 Person Example

(iii) members can be added to objects dynamically.

We chose these features because, (i) represents the way objects are created
in JavaScript, (ii) is a way by which objects acquire methods, and (iii) gives
flexibility to programs.

JS0 does not include the following JavaScript features: libraries of func-
tions, native calls, global this (through a global object), dynamic variable
creation, functions as objects, dynamic removal of members, delegation and
prototyping. We omitted these features because the first three are not central
to the paradigm, while the others are too difficult to support in a statically
typed language. We can write the introductory examples from [10] in JS0

assuming libraries of functions, and predefined types floats, strings, etc. The
syntax of JS0 is given in Figure 3. A program is a sequence of function decla-
rations. In JS0 functions may have only one formal parameter. The extension
to functions with multiple parameters is trivial. For a program P, P(f) is
defined as follows #1

3.1 Operational Semantics

We have a structural operational semantics for JS0 that rewrites tuples of
expressions, heaps and stacks into tuples of values, heaps and stacks in the
context of a program. The signature of the rewriting relation �� is:

�� : Program � Exp × Heap × Stack � (Val ∪ Dev)× Heap× Stack

5

C.Anderson et al.

1 function Person(x:Int):<< money : Int, payMe : MT, boss : T? >> {
2 this:<< money : Int?, payMe : MT?, boss : T? >>;
3 this.money = x;
4 this.payMe = moneyTrans;
5 this
6 }
7

8 function moneyTrans(x:Int):Int {
9 this:<< money : Int >>;

10 this.money = this.money + x
11 }
12

13 function employPerson(x:<< money : Int, payMe : MT, boss : T? >>,
14 y:<< money : Int, payMe : MT, boss : T? >>):
15 << money : Int, payMe : MT, boss : T >>
16 {
17 this:<<>>;
18 x.boss = y; x
19 }
20

21 //Main

22 john:<< money : Int, payMe : MT, boss : T? >>;
23 paul:<< money : Int, payMe : MT, boss : T? >>;
24 john = new Person(100);
25 paul = new Person(0);
26 paul=employPerson(paul,john);paul.payMe(10);paul.boss

Fig. 2. Typed JS0 Person Example

where:

H ∈ Heap = Addr →fin Obj
S ∈ Stack = #1
v ∈ Val = {null} ∪ FuncID ∪ Addr ∪ Int
dv ∈ Dev = {nullPntrExc, stuckErr}
o ∈ Obj = MemberID →fin Val

The heap maps addresses to objects, where addresses, Addr, are ι0, ..ιn... We
use →fin to indicate a finite mapping. With H[ι 7→ v] we denote the updating
of the value of the address ι in the heap H to v. The stack maps this to an
address and x to a value, where values, Val, are function identifiers (denoting
functions), addresses (denoting objects), null , or integers. Finally objects are
finite mappings between member identifiers and values. With [[m1 : v1...mn :
vn]] we denote the object mapping mi to vi for i ∈ 1 · · ·n. For stacks and
objects we use the updating notation previously defined for heaps.

To give a taste of the operational semantics, we show rule (mem-call). A

6

C.Anderson et al.

P ∈ Program ::= F∗

F ∈ FuncDecl ::= function f (x) { e }
e ∈ Exp ::= var locals

f function identifier
new f(e) object creation
e; e sequence
e.m(e) member call
e.m member select
f(e) global call
lhs = e assignment
e1? e2 : e3 conditional
null null
n integer

var ∈ EnvVars ::= this | x
lhs ∈ LeftSide ::= x | e.m

Identifiers

f ∈ FuncID ::= f | f′ | . . .
m ∈ MemberID ::= m | m′ | . . .

Fig. 3. Syntax of JS0

full description of the rules is given in Appendix A.

e1, H, S �� ι, H1, S1

e2, H1, S1 �� v′, H2, S
′

H2(ι)(m) = f
P(f) = function f(x) {e′}
e′, H2, {this 7→ ι, x 7→ v′} �� v, H′, S′′

(mem-call)
e1.m(e2), H, S �� v, H′, S′

In rule (mem-call) we first evaluate the receiver and then the actual param-
eter of the method. We obtain the function definition (corresponding to the
method) by looking up the value of member m in the receiver (obtained by
evaluation of e) in P 5 . We execute the body with a stack in which this refers
to the receiver of the call and x to the value of the actual parameter. Finally,
we return the stack after the evaluation of the actual parameter and the heap
resulting from the execution of the body of the method, so that this and x

are bound to their value before the evaluation of the body, but the heap has
the effects of the evaluation of the body.

Returning to the example in Figure 1, executing the body of function Main

in the presence of an empty heap, H0, with stack, S0, mapping john and paul

to null will produce heap H1 and stack S1 such that john and paul are
mapped to ι0 and ι1 respectively, and

5 For clearness of presentation we omit P from the reduction rules.

7

C.Anderson et al.

#1
H1(ι1) = [[money : 10, payMe : moneyTrans, boss : ι0]]

Note that the member payMe aliases function moneyTrans which was in-
voked when paul.payMe(10) was executed.

4 A Type System for JS0

In this section we introduce a fully-typed version of JS0: JST
0 .

4.1 Types

Figure 4 shows the parts of JST
0 that differ from JS0 along with the definitions

of types. We make the following observations:

• functions have a return type preceded by a colon,

• function formal parameters are given types, and

• function bodies start by declaring the type of the receiver, this.

Types t1, ..., tn, comprise object types, function types, or Int (the type of
integers). Object types #1 list the methods and fields present in the object.
We use the µ-binder to allow a type to refer to itself. So µ α.M where M =<
< m1 : t1 · · ·mn : tn >>, is the type of an object with members m1, ..., mn of
type t1, ..., tn, respectively. With µ α.M[m 7→ t] we denote the updating of
the member m to type t in M. In Figure 5 we define M(m), which selects the
annotated type of the member m in M (if it is defined), and T (M, m), which
selects the type (without the annotation) of the member m in M. Function
types #1. As for object types the µ-binder allows to refer to the whole type.

The definition of free variables of a type is the standard one:

FV(<< m1 : t1...mn : tn >>) =
⋃

i∈1...nFV(ti),
FV((t1, t2) → t3) =

⋃
i∈1...3FV(ti),

FV(µ α.t) = FV(t)− {α},
FV(α) = {α}, and FV(Int) = ∅.

We say that a type t is well-formed if it is closed (FV(t) = ∅), and, if the type
is an object type, then it contains unique member definitions.

If the type of m is α, or M, or µ α.M, or Int the member represents a field.
In the case of α the type has the structure of the enclosing type (µ α.M). If
the type of m is µ α.(t1, t2) → t3, or (t1, t2) → t3, then m represents a method.
The type of a function, f, in a program P is found using the lookup function
L that follows:

L(P, f) =

{
(t, t′) → t′′ if P(f) = function f(x : t′) : t′′{ this : t; e}
Udf otherwise

8

C.Anderson et al.

Syntax

P ∈ Program ::= F∗

F ∈ FuncDecl ::= function f (x:t′):t′′ { this:t; e }

Types

t ∈ Type ::= µ α.M | M | α | Int
µ α.(µ α.M, t) → t | (µ α.M, t) → t

M ∈ MemberTypes ::= << (m : t[?])∗ >>
α ∈ ObjVar ::= α | α′ | α′′ | . . .

Fig. 4. Syntax of JST
0

M(m) =


t if M =<< · · ·m : t · · · >>
t? if M =<< · · ·m : t? · · · >>
Udf otherwise

T (M, m) =

{
t if M(m) = t or M(m) = t?
Udf if M(m) = Udf

Fig. 5. Selection of member’s type

Some members of an object type are annotated with ?. This indicates a
potential member, m:t ?, that can be assigned to later thus, allowing objects
to evolve. In a well-typed program potential members may not be accessed
until they have been assigned to.

4.1.1 Congruence and Subtyping

Congruence between types is defined in Fig. 6. With t1[α/t2], we denote
the substitution of the free occurrences of α in t1 with t2. Object types are
congruent up to α-conversion, permutation of their members, and unfolding
of the bound variable, and function types are congruent up to α-conversion,
and unfolding of the bound variable.

The subtyping judgement t 4 t′, defined in Figure 7, means that an object
or function of type t can be used whenever one of type t′ is required.

For object types we have subtyping in width. Firstly, all definite members
of M′ must be present and congruent with those in M (first line of the rule for
µ α.M 4 µ α′.M′ in Figure 7). To ensure that the types are closed we substitute
occurrences of bound variables by their enclosing type. The second condition

9

C.Anderson et al.

Reflexivity Unfolding Alpha− conversion

t ≡ t µ α.t ≡ t[α/µ α.t]

α′ 6∈ FV(t)

µ α.t ≡ µ α′.t[α/α′]

Functions

ti ≡ t′i i ∈ {1, 2, 3}

#1

Reordering

∀ m (M(m) = t ⇐⇒ M′(m) = t′) ∧ t′ ≡ t
∀ m (M(m) = t? ⇐⇒ M′(m) = t′?) ∧ t′ ≡ t

µ α.M ≡ µ α′.M′

Transitivity

t1 ≡ t2 t2 ≡ t3

t1 ≡ t3

Fig. 6. Congruence for types

of the definition in Figure 7 (second line of the rule for µ α.M 4 µ α′.M′)
refers to the potential members in M′. In particular, it states that all potential
members of M′ must be present as potential or definite members of M with
congruent types. This condition is needed to insure that the addition of a new
member to an object does not break compatibility. #1

x:µ α. << m1 : Int? >>
y:µ α. << m1 : α? >>
z:µ α. <<>>
z = x;
x.m1 = 5; .
y = z;
y.m1 = null

Any reasonable subtyping for object types is such that µ α. << m1 : Int? >>
and µ α. << m1 : α? >> are subtypes of µ α. <<>>. So the assignment z = x;

is correct. #1

For function types subtyping coincides with congruence. In future versions
of this work we may relax this restriction and allow contravariance on the
receiver and parameter type and covariance on the return type.

10

C.Anderson et al.

t ≡ t′

t 4 t′

t1 4 t2 t2 4 t3

t1 4 t3

∀ m (M′(m) = t′ =⇒ M(m) = t) ∧ t′[α′/µ α′.M′] ≡ t[α/µ α.M])
∀ m (M′(m) = t′? =⇒ T (M, m) = t) ∧ t′[α′/µ α′.M′] ≡ t[α/µ α.M])

µ α.M 4 µ α′.M′

Fig. 7. Subtyping

Given types t and t′ it is decidable whether t 4 t′ or not.

4.2 Typing of Expressions

Typing an expression e in the context of a program P, and environment Γ has
the form:

P, Γ ` e : t ‖ Γ′

The environment, Γ = {this : µ α.M, x : t}, maps the receiver, this, to a
well-formed object type, and the formal parameter, x, to a well-formed type.
With Γ[var 7→ t] we denote the updating of var to type t in Γ. The environment
on the right hand side of the typing judgement reflects the changes to the type
of the receiver or parameter while typing the expression. The only change
possible is the removal of ? from the type of a member of this or x.

Consider the typing rules of Figure 8. Rules (var), (func), and (const)
are straightforward. #1

In rule (mem − acc) the expression e must be of an object type in which
the member m is definite, i.e. defined and without the annotation ?. In the
type of the member, all occurrences of α are substituted with the enclosing
type to return a closed type.

In rule (meth − call) we check that the type of the receiver is an object
type in which the member m has a function type, and it is definite. Moreover,
the type of the receiver and actual parameter must be subtypes of the declared
type of the receiver and formal parameter for the function f. #1

In (call) we consider global calls and constructors, and require that the
type of the receiver defined in the function has no definite members. This
is consistent with the operational semantics, as in the case of global call and
object creation we start with an empty receiver object.

In rule (assign−add) we modify the type environment, by removing from
the type of member m (of this or of the formal parameter) the annotation ?
(if the member has a ? annotation). From this point the member m may be
accessed. The type of the expression assigned must be a subtype of the type

11

C.Anderson et al.

of the member after being closed. #1

P, Γ ` x.m2 = x : t ‖ Γ′

where Γ′ maps this to Γ(this) and x to

<< m1 : Int, m2 : µ α. << m1 : Int, m2 : α? >>>>

This reflects the updating of member m2. Note that the type of the member
m2 of the type of m2 has still the annotation ?.

The rule (assign− upd), which assumes that the member m be defined is
similar.

In rule (cond) the operation t t t′ is applicable (and so also the rule) only
when the types t and t′ are compatible, that is:

• either t ≡ t′,

• or t ≡ µ α.M, t′ ≡ µ α′.M′ and
· M(m) 6= Udf if and only if M′(m) 6= Udf and
· T (M, m) = t′′ implies T (M′, m) = t′′′ and t′′[α/t] ≡ t′′′[α′/t′].

Therefore, for object types the types must have the same members (that could
be definite in one type and potential in the other) with congruent types. If t
and t′ are compatible define the upper bound of t and t′, t t t′ by:

t t t′ =


t if t′ ≡ t
µ α.M′′ if t ≡ µ α.M, t′ ≡ µ α′.M′ where

M′′(m) = t′′ #1 (M(m) = t′′ and M′(m) = t′′′)
M′′(m) = t′′? #1 (M(m) = t′′? or M′(m) = t′′′?)

For object types a member of tt t′ is definite if it is a definite member of both
t and t′, otherwise it is a potential member.

Compatibility for environments is defined as follows: Γ and Γ′ are com-
patible if and only if for all var such that var ∈ Γ, and var ∈ Γ′, Γ(var) is
compatible with Γ′(var). If Γ and Γ′ are compatible

Γ t Γ′ = {this : Γ(this) t Γ′(this), x : Γ(x) t Γ′(x)}

We can prove that if P, Γ ` e1 : t ‖ Γ′, then Γ and Γ′ are compatible, since Γ′

may differ from Γ only because some potential members of a var have become
definite. Therefore, if P, Γ ` e1 : t ‖ Γ′ and P, Γ ` e2 : t′ ‖ Γ′′ then Γ′′ and Γ′

are compatible. Clearly, if there is no relation between e1 and e2, there may
be no relation between t and t′ in which case rule (cond) is not applicable.

In rule (var− ass) the type of e has to be a subtype of the type of x in Γ′.

12

C.Anderson et al.

The operation on types, t′ ? t, which is defined if t 4 t′, is as follows:

t′ ? t =


t′ if t′ ≡ t
µ α′.M′′ if t ≡ µ α.M, t′ ≡ µ α′.M′ where

M′′(m) = t′′ #1
M′′(m) = t′′ ?#1

When applied to object types, t′ ? t returns a type with all the members of
t′, with those that are definite in t being made definite in t′ ? t (Note that
since t 4 t′ any definite member of t′ must be also a definite member of t). In
the rule (var − ass) this operation is used to remove the annotation ? from
the members of the type of x in Γ′ (if the type is an object type) which are
definite members of the type of e. #1

#1

A program P is well-formed if all the function declarations in P are well-
typed, that is: if f is such that P(f) = function f(x : t′) : t′′{ this : t; e}
• the types t, t′ and t′′ are well-formed, t ≡ µ α.M,

• P, {this : µ α.M, x : t′} ` e : t′′′ ‖ Γ′ and t′′′ 4 t′′.

5 Formal Properties of the Type System

In this section we outline the proof that our type system is sound w.r.t. to the
operational semantics given in Section 3.1. We assume that types are well-
formed. We first define the notion of a value being compatible with a given
type. The definition is given co-inductively by first defining the properties
that any agreement relation #1 should have.

Definition 5.1 Given a heap, H, and a #1 program, P, we say that A ⊆
(Val× Type) is an agreement relation if:

• (null, t) ∈ A if and only if #1

• (n, t) ∈ A if and only if t = Int,

• if (f, t) ∈ A, then #1,

• if (ι, t) ∈ A, then t#1µ α.M, and
· H(ι) = [[m1 : v1 . . . mp : vp]]

· for all m and t′ such that M(m) = t′ we have that
m = mi for some i ∈ 1...p and (vi, t

′[α/t]) ∈ A
· for all m and t′ such that M(m) = t′?

if m = mi for some i ∈ 1...p then (vi, t
′[α/t]) ∈ A

If A and A′ are agreement relations also A ∪ A′ is an agreement relation.
Therefore given a heap, H, and a program, P, the union of all agreement
relations defines the relation between values and types, that says when a value
has a given type.

13

C.Anderson et al.

(var)
P, Γ ` this : Γ(this) ‖ Γ
P, Γ ` x : Γ(x) ‖ Γ

#1
(func)

P, Γ ` f : t ‖ Γ

(const)
P, Γ ` null : µ α.M ‖ Γ
P, Γ ` n : Int ‖ Γ

P, Γ ` e : µ α.M ‖ Γ′

M(m) = t
(mem− acc)

P, Γ ` e.m : t[α/µ α.M] ‖ Γ′

P, Γ ` e1 : t ‖ Γ′

P, Γ′ ` e2 : t′ ‖ Γ′′
(seq)

P, Γ ` e1; e2 : t′ ‖ Γ′′

P, Γ ` e1 : µ α.M ‖ Γ′

M(m) = µ α′.(t1, t
′
1) → t′′1

P, Γ′ ` e2 : t ‖ Γ′′

t 4 t′1[α
′/M(m)]

µ α.M 4 t1[α
′/M(m)]

(meth− call)
P, Γ ` e1.m(e2) : t′′1[α

′/M(m)] ‖ Γ′′

P, Γ ` e : t ‖ Γ′

L(P, f) = µ α′.(µ α.M, t′1) → t′′1
t 4 t′1[α

′/L(P, f)]
{t′ | M(m) = t′} = ∅

(call)
P, Γ ` new f(e) : t′′1[α

′/L(P, f)] ‖ Γ′

P, Γ ` f(e) : t′′1#1 ‖ Γ′

P, Γ ` e2 : t ‖ Γ′

Γ′(var) = µ α.M
t′ = M[α/µ α.M]
T (t′, m) = t′′

t 4 t′′

Γ′′ = Γ′[var 7→ t′[m 7→ t′′]]
(assign− add)

P, Γ ` var.m = e2 : t ‖ Γ′′

P, Γ ` e1 : µ α.M ‖ Γ′

M(m) = t′

P, Γ′ ` e2 : t ‖ Γ′′

t 4 t′[α/µ α.M]
(assign− upd)

P, Γ ` e1.m = e2 : t ‖ Γ′′

P, Γ ` e1 : Int ‖ Γ′

P, Γ′ ` e2 : t ‖ Γ′′

P, Γ′ ` e3 : t′ ‖ Γ′′′
(cond)

P, Γ ` e1? e2 : e3 : t t t′ ‖ Γ′′ t Γ′′′

P, Γ ` e : t ‖ Γ′

t 4 Γ′(x)
Γ′′ = Γ′[x 7→ Γ′(x) ? t]

(var − ass)
P, Γ ` x = e : t ‖ Γ′′

Fig. 8. Typing rules for expressions in JST
0

14

C.Anderson et al.

Definition 5.2 Value v is compatible with type t in H, P,H ` v J t, if for
some agreement relation A on H and P we have that (v, t) ∈ A

Note that an address may be compatible with more than one type. In
particular, if a value is compatible with a type, then it is compatible with all
its supertypes.

Lemma 5.3 If t 4 t′ and P, H ` v J t then P, H ` v J t′

In the following we define when a stack S and a heap H are compatible with
an environment Γ.

Definition 5.4 P, Γ ` H, S � holds if P, H ` S(this) J Γ(this) and P, H `
S(x) J Γ(x)

We introduce a relation between pairs of heaps, stacks saying that a pair
heap, stack can be obtained from the other during the evaluation of an ex-
pression.

Definition 5.5 Given heaps H and H′, and stacks S and S′, P ` H, S � H′, S′

holds if:

• S(this) = S′(this).

• for all types t if P, H ` S(x) J t holds then also P, H ` S′(x) J t holds.

• for all addresses ι and types t if P,H ` ι J t holds then also P, H′ ` ι J t
holds.

We can now state the main lemma.

Lemma 5.6 For a well-formed program P, environment Γ, and expression e,
such that:

P, Γ ` e : t ‖ Γ′

If e, H, S �� v, H′, S′, and P, Γ ` H, S � then

(i) P, H′ ` v J t,

(ii) P, Γ′ ` H′, S′ �, and

(iii) P ` H, S � H′, S′

The soundness theorem asserts that if an expression is well-typed in a type
environment Γ, then the evaluation of the expression starting in a heap and
stack that agree with Γ cannot produce a run-time error. That is, the result
of the evaluation is either a value of the right type, or it is a nullPntrExc

exception. In particular, it is not a stuckErr error.

Theorem 5.7 [Type Soundness] For a well-formed program P, environment
Γ, and expression e, such that:

P, Γ ` e : t ‖ Γ′

If P, Γ ` H, S � and e, H, S �� w, H′, S′, then

15

C.Anderson et al.

• either w = v, and P, H′ ` v J t,

• or w = nullPntrExc.

6 Comparisons and Future Work

In this paper a flexible type system for an idealized version of JavaScript is
defined, and its soundness outlined. JavaScript is an object based language
allowing extensible objects, and sharing of method bodies.

Type systems for object based languages have been developed mainly in
a functional setting, see [1] and [9]. An imperative type safe object oriented
language, TOIL, was introduced in [6]. Even though the language is class
based, its type system does not identify types with classes. This makes the
definition of types similar to ours. TOIL, however, does not have extensible
objects, so there is no need for identifying potential members.

Extensible objects have being considered in a functional setting in [8]. An
imperative calculus for extensible objects was proposed by Bono and Fisher,
in [5]. In Bono and Fisher type system there are two types for objects: the
proto-types that can be extended and the object-types that cannot. The type
system tracks potential members. The main difference between our system and
Bono Fisher type system is the fact that we use recursive types (instead of
row types plus universal and existential quantification). This makes possible,
for us, to have a decidable type inference algorithm, see the final paragraph of
this section. Note that, Bono and Fisher’s aim was to encode classes in their
object calculus, not to obtain a type inference algorithm. Recursive types
with subtyping have been studied in conjunction with functional programming
languages by various researchers, see for instance [3].

Alias types are used in [4] and [7] to track the evolution of objects. In
particular, in [7] potential members are used for the same purpose as the
current paper. Alias types are, however, very different from the types used in
this paper. They are singleton types identified with the address of objects.

The need for ensuring type safety in dynamically typed languages has been
widely recognized. See for instance [11], [2], and [13]. In these papers, con-
straints are defined that insure that terms for which the inferred constraints
are solvable do not cause message not understood errors. We approach the
same problem differently, we first define a type system, that has good prop-
erties, such as soundness (well-typed expressions do not cause message not
understood errors), and expressiveness (all the significant examples we have
can be typed). Our next step will be defining a type inference algorithm such
that the type inferred for a term is a type derivable for the term. In particular,
we would like to achieve a principal typing, that is a typing from which all
the typing of a term be derivable. Principality insures that we can do the
type analysis in a modular way, that is we can type check two expressions
separately and then type check their composition just based on their type
information. This is not possible for the systems of [11], [2], and [13].

16

C.Anderson et al.

Acknowledgements

We would like to thank Sophia Drossopoulou for very detailed comments and
useful suggestions, and Mario Coppo for his help and insight. We would also
like to thank our colleagues at Imperial College Department of Computing
and Dipartimento di Informatica of Torino University.

References

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, New
York, NY, 1996.

[2] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. Type inference of
SELF: Analysis of objects with dynamic and multiple inheritance. Lecture
Notes in Computer Science, 707:247–262, 1993.

[3] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4):575–631, 1993.

[4] C. Anderson, F. Barbanera, M. Dezani-Ciancaglini, and S. Drossopoulou. Can
addresses be types? (a case study: objects with delegation). In WOOD ’03,
volume 82 of ENTCS. Elsevier, 2003.

[5] V. Bono and K. Fisher. An Imperative, First-Order Calculus with Object
Extension. In Proc. of ECOOP’98, volume 1445 of LNCS, pages 462–497,
1998. A preliminary version already appeared in Proc. of 5th Annual FOOL
Workshop.

[6] Kim Bruce, A. Schuett, and R. van Gent. Polytoil: A type safe polymorphic
object-oriented language. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), 1995.

[7] F. Damiani and P. Giannini. Alias types for environment aware computations.
In WOOD ’03, volume 82 of ENTCS. Elsevier, 2003.

[8] K. Fisher. Type Systems for Object-Oriented Programming Languages. PhD
thesis, Stanford University, 1996. Available as Stanford Computer Science
Technical Report number STAN-CS-TR-98-1602.

[9] K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects
and Method Specialization. Nordic Journal of Computing, 1(1):3–37, 1994. A
preliminary version appeared in Proc. of IEEE Symp. LICS’93.

[10] David Flanagan. JavaScript - The Definitive Guide. O’Reilly, 1998.

[11] Justin O. Graver and Ralph E. Johnson. A type system for smalltalk. In
Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 136–150. ACM Press, 1990.

[12] Netscape. JavaScript Language Reference. http://developer.netscape.
com/docs/manuals/js/.

17

http://developer.netscape.com/
http://developer.netscape.com/
docs/manuals/js/

C.Anderson et al.

[13] Mike Salib. Static type inference (for python) with starkiller. http://www.
python.org/pycon/dc2004/papers/1/paper.pdf, 2004.

A Operation Semantics of JS0

In Figures A.1, A.2 and A.3 we list the rules of the operational semantics
for JS0. The operational semantics rewrites tuples of expressions, heaps and
stacks into tuples of values, heaps and stacks in the context of a program, P.
The signature of the rewriting relation and the definitions of the components
are given in Section 3.1.

In Figure A.1 we give the rules that describe execution when there are
no errors. We discuss the most interesting rules, namely: (var), (mem-
sel), (param-ass), (new), (cond-true), (cond-false). (Rule (mem-call) was
discussed in the Section 3.1).

In (var) the receiver, this, or parameter, x, are looked up in the stack,
and heap and stack are unmodified.

In (mem-sel) member m is looked up in the receiver ι (obtained by evalu-
ation of e) in the heap. If m is not found in ι, then this rule is not applicable
(instead one of the rules generating errors can be applied).

In (param-ass) we replace the value of x in the stack with the value
obtained by execution of e.

In (new) we evaluate the body of function f (looked up in P) with a stack
mapping this to a fresh address that points to an empty object, and the
formal parameter, x, to the value obtained by the evaluation of the actual
parameter.

In (cond-true) and (cond-false) we evaluate the conditional test, e1 . If the
value is 0 then we return the result of the evaluation of e2 , and if the value is
an integer greater than 0 we return the result of the evaluation of e3.

A.0.1 Runtime Errors

Figure A.2 gives rules for the cases where something has gone wrong. The
possible errors are: access to members of null objects, access to non existing
members of objects or non existing objects, undefined functions, the test of
a conditional expression is not evaluated to an integer. The first error raises
nullPntrExc, whereas the others result in stuckErr. Our type system ensure
that a well-typed expression cannot evaluate to stuckErr.

Figure A.3 gives the rules for propagation of exceptions and errors once
they have been generated. An exception or error is propagated upwards until
it reaches the top, as with Java exceptions.

18

http://www.python.org/pycon/dc2004/papers/1/paper.pdf
http://www.python.org/pycon/dc2004/papers/1/paper.pdf

C.Anderson et al.

#1 #1

e, H, S �� ι, H′, S′
(mem-sel)

e.m, H, S �� H′(ι)(m), H′, S′

e1, H, S �� v′, H1, S1

e2, H1, S1 �� v, H′, S′
(seq)

e1; e2, H, S �� v, H′, S′

e1, H, S �� ι, H1, S1

e2, H1, S1 �� v, H2, S
′

H′ = H2[ι 7→ H2(ι)[m 7→ v]]
(mem-ass)

e1.m = e2, H, S �� v, H′, S′

e, H, S �� v, H′, S′′

S′ = S[x 7→ v]
(param-ass)

x = e, H, S �� v, H′, S′

e1 , H, S �� v′, H′′, S′′

v′ > 0
e2 , H

′′, S′′ �� v, H′, S′
(cond-true)

e1? e2 : e3 , H, S �� v, H′, S′

e1 , H, S �� 0, H′′, S′′

e3 , H
′′, S′′ �� v, H′, S′

(cond-false)
e1? e2 : e3 , H, S �� v, H′, S′

e, H, S �� v′, H1, S
′

P(f) = function f(x : t′) : t′′{ this : t; e}
ι is new in H1 and H2 = H1[ι 7→ [[]]]
e′, H2, {this 7→ ι, x 7→ v′} �� v, H′, S′′

(new)
new f(e), H, S �� ι, H′, S′

e1, H, S �� ι, H1, S1

e2, H1, S1 �� v′, H2, S
′

H2(ι)(m) = f
P(f) = function f(x : t′) : t′′{ this : t; e}
e′, H2, {this 7→ ι, x 7→ v′} �� v, H′, S′′

(mem-call)
e1.m(e2), H, S �� v, H′, S′

e, H, S �� v′, H1, S
′

P(f) = function f(x : t′) : t′′{ this : t; e}
ι is new in H1 and H2 = H1[ι 7→ [[]]]
e′, H2, {this 7→ ι, x 7→ v} �� v, H′, S′′

(func-call)
f(e), H, S �� v, H′, S′

Fig. A.1. Operational Semantics of JS0

19

C.Anderson et al.

e, H, S �� null, H′, S′

e.m, H, S �� nullPntrExc, H′, S′

e.m = e′, H, S �� nullPntrExc, H′, S′

e.m(e′), H, S �� nullPntrExc, H′, S′

e, H, S �� v, H′, S′

v 6= null

v 6∈ Addr or (v = ι and H(ι) = Udf)

e.m, H, S �� stuckErr, H′, S′

e.m = e′, H, S �� stuckErr, H′, S′

e.m(e′), H, S �� stuckErr, H′, S′

e, H, S �� ι, H′, S′

H′(ι)(m) = Udf
e.m, H, S �� stuckErr, H′, S′

e.m = e′, H, S �� stuckErr, H′, S′

e.m(e′), H, S �� stuckErr, H′, S′

e1, H, S �� ι, H1, S1

e2, H1, S1 �� v′, H′, S′

H′(ι)(m) = f
P(f) = Udf

e1.m(e2), H, S �� stuckErr, H′, S′

e, H, S �� v′, H′, S′

P(f) = Udf
f(e), H, S �� stuckErr, H′, S′

#1

e1 , H, S �� ι, H′, S′

e1? e2 : e3 , H, S �� stuckErr, H′, S′

Fig. A.2. Operational Semantics - generation of exceptions

20

C.Anderson et al.

e, H, S �� dv, H′, S′

x = e, H, S �� dv, H′, S′

f(e), H, S �� dv, H′, S′

new f(e), H, S �� dv, H′, S′

e.m, H, S �� dv, H′, S′

e.m = e′, H, S �� dv, H′, S′

e; e′, H, S �� dv, H′, S′

e.m(e′), H, S �� dv, H′, S′

e1, H, S �� ι, H1, S1

e2, H1, S1 �� dv, H′, S′

e1.m = e2, H, S �� dv, H′, S′

e1.m(e2), H, S �� dv, H′, S′

e1, H, S �� ι, H1, S1

e2, H1, S1 �� v′, H2, S
′

H2(ι)(m) = f
P(f) = function f(x : t′) : t′′{ this : t; e}
e′, H2, {this 7→ ι, x 7→ v′} �� dv, H′, S′′

e1.m(e2), H, S �� dv, H′, S′

e1, H, S �� v, H1, S1

e2, H1, S1 �� dv, H′, S′

e1; e2, H, S �� dv, H′, S′

e, H, S �� v′, H1, S
′

P(f) = function f(x : t′) : t′′{ this : t; e}
ι is new in H1 and H2 = H1[ι 7→ [[]]]
e′, H2, {this 7→ ι, x 7→ v′} �� dv, H′, S′′

f(e), H, S �� dv, H′, S′

#1

e1 , H, S �� dv, H′, S′

or (e1 , H, S �� v, H′′, S′′ and e2 , H
′′, S′′ �� dv, H′, S′ and v > 0)

or (e1 , H, S �� 0, H′′, S′′ and e3 , H
′′, S′′ �� dv, H′, S′)

e1? e2 : e3 , H, S �� dv, H′, S′

Fig. A.3. Operational Semantics - propagation of exceptions

21

	Introduction
	Example
	JS0
	Operational Semantics

	A Type System for JS0
	Types
	Typing of Expressions

	Formal Properties of the Type System
	Comparisons and Future Work
	References
	Operation Semantics of JS0

