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Abstract—Calculation of performance metrics such as steady-
state probabilities and response time distributions in large
Markov and semi-Markov models can be accomplished
using parallel implementations of well-known numerical
techniques. In the past these implementations have usually
been run on dedicated computational clusters and networks
of workstations, but the recent rise of cloud computing offers
an alternative environment for executing such applications.
It is important, however, to understand what effect moving to
a cloud-based infrastructure will have on the performance of
the analysis tools themselves. In this paper we investigatethe
scalability of two existing parallel performance analysistools
(one based on Laplace transform inversion and the other on
uniformisation) on Amazon’s Elastic Compute Cloud, and
compare this with their performance on traditional dedicated
hardware. This provides insight into whether such tools can
be used effectively in a cloud environment, and suggests
factors which must be borne in mind when designing next-
generation performance tools specifically for the cloud.
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I. I NTRODUCTION

One common approach for the analysis of Markov and
semi-Markov chains with many millions of states is to
use the combined compute power and memory capacity of
a number of computers in parallel; for example, see [1],
[2], [3], [4]. Our own prior work has similarly exploited
parallel techniques to compute response time densities
and distributions in very large Markov and Semi-Markov
chains [5], [6], [7], [8], [9].

To exploit the power of these implementations, the user is
typically required to possess a dedicated computational
cluster or network of workstations. Such hardware is,
however, expensive to buy and to run, requires sufficient
space with associated power and cooling to house it, and
staff to maintain it. With the coming pressure on academic
research budgets in the UK, it is conceivable that individ-
ual research groups will struggle to continue to acquire
such resources for themselves. Cloud computing holds the
promise of dramatically reducing these overheads. Instead
of purchasing and maintain one’s own machines, the user
instead pays for time on machines owned by a third party.

The idea of centralised computing services is not new,
and indeed UK academic users have access to large-
scale parallel computing resources either within their own
institutions (e.g. Imperial College’s High Performance
Computing Service [10]) or nationally via the EPSRC-
managed HECToR machines [11]. Such resources tend

to be geared towards high-end scientific computing users
requiring hundreds of processors for many hours at a
time, however, while performance analysts usually require
much more modest (although still expensive) resources for
far less time. Something like Amazon’s Elastic Compute
Cloud (EC2) service is therefore far better suited to
our requirements: computing power is available to all
users, regardless of how many or how few processors are
required, for as long as they need them at a cost which is
far cheaper than that of equivalent in-house resources.

A key concern in using existing performance analysis tools
in the cloud is how well those tools themselves perform
in this environment. The performance of parallel programs
is often expressed in terms of their scalability; that is, to
what extent using extra processors reduces the overall run-
time. When producing scalability results for publication,
it is usual to run the tools on idle machines with little load
on the network to minimise the effect of external factors
on their performance.

Such an ideal situation cannot be expected in a cloud
computing environment, however. By its very nature, our
tools will have to share physical hardware (both processors
and network connections) with many other executing
applications. How our tools perform in this environment
will therefore differ greatly from their performance in
ideal conditions. It is important to understand how their
performance scales, however, as cloud computing offers
the ability to make use of large numbers of processors far
more cheaply than we could ourselves own. If our tools
cannot efficiently use these extra resources then they will
either need to be modified, or replaced with tools that can.

In this paper we study the scalability of two of
our previously-presented performance analysis tools: a
Laplace transform-based response time analyser [6] and
the HYpergraph-based Distributed Response-time Anal-
yser (HYDRA) [7], [12]. We compare their scalability in
a cloud computing environment (Amazon EC2) with that
observed on a variety of parallel environments (including
parallel computers, dedicated clusters and networks of
workstations) in the context of a case study analysis of
the Flexible Manufacturing System (FMS) Generalised
Stochastic Petri Net (GSPN) model.

The remainder of this paper is organised as follows.
Section II briefly describes the theoretical underpinnings
and parallel implementations of the performance analysis
tools chosen for this study, before Section III describes



the Amazon EC2 environment and the Amazon Machine
Image with which this study will be conducted. Section IV
then presents the observed scalability results for the chosen
tools across a range of parallel environments and discusses
the implications. Finally, Section V concludes and consid-
ers future work.

II. PERFORMANCEANALYSIS TOOLS

We will study the scalability of two previously-
presented performance analysis tools: a Laplace trans-
form inverter [6] and the HYpergraph-based Distributed
Response-time Analyser (HYDRA) [7], [12]. Although
the core computation carried out by both tools is repeated
sparse matrix-vector multiplication, the way in which they
parallelise the problem is different and consequently they
place very different communication loads on the network.
For each tool, we briefly sketch the underlying theory and
then describe its parallel operation.

A. Laplace Transform Inverter

In a GSPN, the first passage time from a single source
marking i into a non-empty set of target markings~j is:

P
i~j

= inf{u > 0 : M(u) ∈ ~j, N(u) > 0, M(0) = i}

whereM(t) is the marking of the GSPN at timet and
N(t) denotes the number of state transitions which have
occurred by timet. Pi~j corresponds to the first time that

the system enters a state in the set of target states~j, given
that the system began in the source statei and at least
one state transition has occurred.P

i~j
is a random variable

with probability density functionf
i~j

(t) such that:

IP(a < P
i~j

< b) =

∫ b

a

f
i~j

(t) dt (0 ≤ a < b)

In order to determinef
i~j

(t) it is necessary to convolve
the state holding-time density functions over all possible
paths from statei to all of the states in~j.

The calculation of the convolution of two functions int-
space can be more easily accomplished by multiplying
their Laplace transforms together ins-space and inverting
the result. The calculation offi~j(t) is therefore achieved
by calculating the Laplace transform of the convolution of
the state holding times over all paths betweeni and~j and
then numerically inverting this Laplace transform.

We proceed by means of a first-step analysis. That is, to
calculate the first passage time from statei into the set of
target states~j, we consider moving from statei to its set
of direct successor states~k and thence from states in~k to
states in~j. The Laplace transform of the (exponential)
sojourn time density function of tangible markingi is
µi/(s+µi), but for a vanishing marking the sojourn time
is 0 with probability 1, giving a corresponding Laplace
transform of 1 for all values ofs. We therefore distinguish

between passage times which start in a tangible state and
those which begin in a vanishing state:
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This system of linear equations can be expressed in
matrix–vector form. For example, when~j = {1}, V = {2}
andT = {1, 3, . . . , n} we have:
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Given a particular (complex-valued)s, these equations
can be solved forL

i~j
(s) by standard iterative numerical

techniques for the solution of systems of linear equations
in Ax = b form. L

i~j
(s) can then be inverted to yield

f
i~j

(t) using numerical techniques such as the Euler [13]
or Laguerre [14] methods.

We have implemented a response time analysis pipeline for
GSPN models, as shown in Fig. 1. Models are specified
in an enhanced form of the DNAmaca Markov Chain
Analyser interface language [15]. From the high-level
model, a state space generator produces the reachability
graph, along with a list of the source and destination mark-
ings that match their respective high-level descriptions.A
steady-state solver then computes appropriate weights for
the source markings.

Control is then passed to the distributed Laplace trans-
form inverter, which employs the master-slave architecture
shown in Fig. 1. It is the scalability of this portion of the
tool that we will investigate later in this paper. The inverter
is written in C++ and uses the Message Passing Interface
(MPI) [16] standard, so it is portable to a wide variety of
parallel computers and workstation clusters.

Initially, the master node determines the distinct values
of the complex variables at which the Laplace transform
of the response time distribution,L(s), will need to be
evaluated. Those values ofs for which there is no value
of L(s) already stored in the disk cache are added to a
global work queue.

At start-up, slave processors read into memory the reach-
ability graph as well as a list of the source and destination
markings and the weights to apply to the distribution for
each source marking. Each slave processor then applies
for an s-value from the global work queue. The slave
calculates the corresponding value ofL(s) by solving the
set of sparse linear equations using an appropriate iterative
numerical method such as Successive Over-Relaxation
(SOR) or Conjugate Gradient Squared (CGS).

Slave processors return computed values ofL(s) to the
master. The master stores the returned value in memory
and disk caches and immediately issues more work to
the slaves if any is available. When all values ofL(s)
have been computed, the master runs through the Laplace
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Figure 1. Response time analysis tool showing operation of the distributed Laplace transform inverter in detail [6].

transform inversion algorithm again, this time performing
all calculations and obtaining any values ofL(s) needed
from the memory cache. The resulting points on the
response time density curve are written to a disk file, and
displayed using the GNUplot graph plotting utility.

The single global work queue with multiple servers en-
sures a good load balance and very high utilisation of slave
processors. In addition, there is no inter-slave communica-
tion and the amount of master-slave communication is low.
We therefore expect this tool to exhibit good scalability.

B. HYDRA

Response time densities and quantiles in Continuous Time
Markov Chains (CTMCs) can also be computed through
the use of uniformisation (also known as randomiza-
tion) [17], [18], [19], [20]. This transforms a CTMC into
one in which all states have the same mean holding time,
1/q, by allowing “invisible” transitions from a state to
itself. This is equivalent to a discrete-time Markov chain,
after normalisation of the rows, together with an associated
Poisson process of rateq. The one-step transition proba-
bility matrix P which characterises the one-step behaviour
of the uniformised DTMC is derived from the generator
matrix Q of the CTMC as:

P = Q/q + I (1)

where the rateq > maxi |qii| ensures that the DTMC is
aperiodic.

The calculation of the first passage time density between
two states has two main components. The first considers
the time to completen hops (n = 1, 2, 3, . . .). Recall that
in the uniformised chain all transitions occur with rateq.
This means that the convolution ofn of these holding-time
densities is the convolution ofn exponentials all with rate
q, which is ann-stage Erlang density with rateq.

Secondly, it is necessary to calculate the probability that
the transition between a source and target state occurs in
exactlyn hops of the uniformised chain, for every value
of n between 1 and a maximum valuem. This is calcu-
lated by repeated sparse matrix-vector multiplications. The
value ofm is determined when the value of thenth Erlang
density function drops below a threshold value. After this
point, further terms are deemed to add nothing significant
to the passage time density and are disregarded.

The density of the time to pass between a source state
i and a target statej in a uniformised Markov chain
can therefore be expressed as the sum ofm n-stage
Erlang densities, weighted with the probability that the
chain moves from statei to statej in exactly n hops
(1 ≤ n ≤ m). The response time between the non-empty
set of source states~i and the non-empty set of target states
~j therefore has probability density function:
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where
π

(n+1) = π
(n)P for n ≥ 0 (3)

The key opportunity for parallelism in HYDRA is in the
repeated sparse matrix-vector multiplications of Eq. 3. To
perform these operations efficiently in parallel it is neces-
sary to map the non-zero elements ofP onto processors
such that the computational load is balanced and commu-
nication between processors is minimised. To achieve this,
we use hypergraph partitioning to assign matrix rows and
corresponding vector elements to processors [21].

Fig. 2 shows the architecture of the HYDRA tool. As with
the Laplace transform-based tool, the process of calcu-
lating a response time density begins with a high-level
model specified in an enhanced form of the DNAmaca
interface language. Next, a probabilistic, hash-based state
generator uses the high-level model description to produce
the generator matrixQ of the model’s underlying Markov
chain as well as a list of the initial and target states.P

is constructed fromQ according to Eq. 1 and partitioned
using a hypergraph partitioning tool.

The pipeline is completed by our distributed response time
density calculator, which is again implemented in C++
and uses MPI. Initially each processor tabulates the Erlang
terms for eacht-point required (cf. Eq. 2). Computation
of these terms ends when they fall below a specified
threshold value. The terminating condition also determines
the maximum number of hopsm used to calculate the
right-hand factor, a sum which is independent oft.

Each processor reads in the rows of the matrix and the
corresponding elements of the vectorπ

(0) that correspond
to its allocated partition. Each processor then determines
which vector elements need to be received from and sent
to every other processor on each iteration,

The vectorπ(n) is then calculated forn = 1, 2, 3, . . . , m
by repeated sparse matrix-vector multiplications of the
form of Eq. 3. For each matrix-vector multiplication, each
processor begins by using non-blocking communication
primitives to send and receive remote vector elements,
while calculating the product of local matrix elements with
locally stored vector elements. The use of non-blocking
operations allows computation and communication to pro-
ceed concurrently on parallel machines where dedicated
network hardware supports this effectively. The processor
then waits for the completion of non-blocking operations
(if they have not already completed) before multiplying
received remote vector elements with the relevant matrix
elements and adding their contributions to the local matrix-
vector product cumulatively.

From the resulting local matrix-vector products each pro-
cessor calculates and stores its contribution to the sum
∑

k∈~j π
(n)
k . After m iterations have completed, these sums

are accumulated onto an arbitrary master processor where
they are multiplied with the tabulated Erlang terms for
each t-point required for the passage time density. The
resulting points are written to a disk file and are displayed
using the GNUplot graph plotting utility.

Our previous work has observed that the use of hypergraph
partitioning to minimise communication during sparse
matrix-vector multiplication gives HYDRA good scalabil-
ity on both parallel computers with fast interconnection
networks and also on networks of workstations connected
via switched Ethernet [7], [12].

III. A MAZON ELASTIC COMPUTE CLOUD

The Amazon Elastic Compute Cloud (Amazon EC2) is
a service that allows users both to purchase computing
resources on-demand and also to reserve them to guarantee
availability in the future. Central to EC2 are Amazon
Machine Images (AMIs), which are instantiations of the
Linux or Windows operating system that are brought into
being by the user and run as virtual machines. Usage is
charged per instance per hour, the current rate in the US-
East region for the on-demand Linux instances used in this
study being $0.085 per instance per hour1. Users manage
the creation and termination of instances via a web-page
or the Linux command line, and once instances are up and
running it is possible tossh into them, as with a physical
machine, and execute programs.

Amazon provide a range of standard AMIs, based on
Windows and various flavours of Linux, that come pre-
installed with commonly-used packages such as MySQL,
Apache and Condor. They also provide tools to enable
users to build their own AMIs containing exactly the
applications and packages that they require, which can
then be shared with the wider EC2 community. Both of our
tools described in the previous section require MPI and,
although none of the standard Amazon AMIs include this,
there is a user-produced AMI that does [22], [23]. We have
therefore used this AMI as the execution environment for
our empirical study. Note that this AMI is only available
in the US-East region of EC2, and not in the European
region.

IV. RESULTS

Fig. 3 shows a 22-place GSPN model of a flexible manu-
facturing system [24], which forms the case study for this
paper. The model describes an assembly line with three
types of machines (M1, M2 and M3) which assemble
four types of parts (P1, P2, P3 andP12). Initially, there
arek unprocessed parts of each typeP1, P2 andP3 in the
system. There are no parts of typeP12 at start-up since
these are assembled from processed parts of typeP1 and

1See http://aws.amazon.com/ec2/pricing/ for a full list ofrates
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Figure 3. The GSPN model of a Flexible Manufacturing System [24].

P2 by the machines of typeM3. When parts of any type
are finished, they are stored for shipping on placesP1s,
P2s, P3s andP12s.

For k = 6, the GSPN’s underlying Markov chain has
537 768 tangible states, while fork = 7 it has 1 639 440
tangible states. In both cases, we compute the response
time density from markings where there arek unprocessed
parts of typesP1 andP2 to the first marking encountered
where a finished part of typeP12 has been produced.

The two scalability metrics in which we are interested for
our tools are speed-up (Sp) and efficiency (Ep). Speed-up
is the improvement gained from solving the problem on
multiple processors compared with on a single processor,
and is calculated as:

Sp =
T1

Tp

whereT1 is the run-time of the tool on one processor and
Tp is the run-time onp processors.

Efficiency represents the proportion of time that a partic-
ipating processor is busy, and is defined as:

Ep =
Sp

p

wherep is the number of processors used. IdeallySp = p
and Ep = 1, but in practice the observed values will be
lower due to the overheads imposed by communication.

EC2 currently restricts a user to a maximum of 20 running
AMI images at any one time, and so this limits the
maximum number of parallel processors for which results
could be produced. We have previously demonstrated both
tools running on more than 16 processors, however, and
do not envisage any technical reasons why they could not
do so on EC2 were this limit to be raised.

A. Laplace Transform Inverter

Tab. I shows the run-times, speed-ups and efficiencies for
the calculation of response time densities onp processors
for the FMS model withk = 6 using the Laplace
transform inversion tool. Corresponding graphs of speed-
up and efficiency are shown in Fig. 4. Note that the run-
times are averaged over 5 runs.

These results are presented for four architectures. The
“PC (2004)” results are reproduced from [8] and were
produced on a network of PC workstations linked together
by 100Mbps switched Ethernet, each PC having an Intel
Pentium 4 2.0GHz processor and 512MB RAM.

We also present new results from a network of modern
PCs, a dedicated cluster and Amazon EC2. The “PC
(2010)” results were produced on a network of Intel Core2
Duo 3.0GHz processor workstations with 4GB RAM,
which were linked together by 1Gbps switched Ethernet.

The “Camelot” cluster consists of 16 dual-processor dual-
core nodes, each of which is a Sun Fire x4100 with two 64-
bit Opteron 2.2GHz processors and 8GB of RAM. Nodes
are connected with both Gigabit Ethernet and Infiniband
interfaces; the Infiniband fabric runs at 2.5Gbps and is
managed by a Silverstorm 9024 switch.

Each processor in the “Amazon” results is an Amazon EC2
Small Instance running the AMI described in the previous
section. This is equivalent to a 1.0-1.2GHz Opteron or
Xeon processor with 1.7GB of RAM2.

As discussed previously, we would expect the Laplace
transform tool to exhibit good scalability as there is very
little inter-processor communication, and this is shown to
be the case in these results. Indeed, it is noticeable that
on EC2 the speed-up trend is almost linear, while on the
network of PCs from 2004 and (surprisingly) the Camelot
cluster the speed-up trend may be beginning to level-off
after 16 processors. These results suggests that the master-
slave architecture with minimal intercommunication is an
appropriate design for cloud-based parallel tools.

2See http://aws.amazon.com/ec2/. Retrieved April 2010.



PC (2004) PC (2010) Camelot Amazon
p T Sp Ep T Sp Ep T Sp Ep T Sp Ep

1 5 096.0 1.0 1.0 1 190.5 1.00 1.00 4 181.3 1.00 1.00 2 835.9 1.00 1.00
2 2 582.6 1.97 0.99 592.4 2.00 1.00 2 149.1 1.95 0.97 1 522.4 1.86 0.93
4 1 298.4 3.92 0.98 301.4 3.95 0.99 1 083.1 3.86 0.97 776.2 3.65 0.91
8 675.8 7.54 0.94 150.9 7.89 0.99 587.6 7.12 0.89 422.7 6.71 0.83
16 398.4 12.79 0.80 78.0 15.26 0.95 350.3 11.94 0.75 218.8 12.96 0.81

Table I
AVERAGE RUN-TIMES IN SECONDS(T), SPEED-UPS(Sp) AND EFFICIENCIES(Ep) FORp-PROCESSOR RESPONSE TIME DENSITY CALCULATIONS

IN THE FMS MODEL WITH k = 6 USING THE LAPLACE TRANSFORM INVERSION TOOL.
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Figure 4. Speed-up and efficiency graphs forp-processor response time density calculations in the FMS model with k = 6 using the Laplace
transform inversion tool.

AP3000 PC (2003) PC (2010) Camelot Amazon
p T Sp Ep T Sp Ep T Sp Ep T Sp Ep T Sp Ep

1 1 243.3 1.00 1.00 325.0 1.00 1.00 76.8 1.00 1.00 178.1 1.00 1.00 112.5 1.00 1.00
2 630.5 1.97 0.99 258.7 1.26 0.63 43.5 1.76 0.88 98.7 1.81 0.90 166.2 0.68 0.34
4 328.2 3.78 0.95 197.1 1.65 0.41 23.2 3.31 0.83 87.9 2.03 0.51 104.8 1.07 0.27
8 182.3 6.82 0.85 143.0 2.27 0.28 15.5 4.94 0.62 48.2 3.70 0.46 86.3 1.30 0.16
16 99.7 12.47 0.78 114.6 2.84 0.18 7.2 10.72 0.67 26.8 6.65 0.42 123.4 0.91 0.06

Table II
AVERAGE RUN-TIMES IN SECONDS(T), SPEED-UPS(Sp) AND EFFICIENCIES(Ep) FORp-PROCESSOR RESPONSE TIME DENSITY CALCULATIONS

IN THE FMS MODEL WITH k = 7 USING HYDRA.
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Figure 5. Speed-up and efficiency graphs forp-processor response time density calculations in the FMS model with k = 7 using HYDRA.



B. HYDRA

Tab. II shows the run-times, speed-ups and efficiencies for
the calculation of response time densities onp processors
for the FMS model withk = 7 using HYDRA. Corre-
sponding graphs of speed-up and efficiency are shown in
Fig. 5. Once again, these run-times were averaged over 5
runs.

These results are presented for five architectures. The “PC
(2010)”, “Camelot” and “Amazon” environments are as
described in the previous section, and we also reproduce
two sets of historical results (“AP3000” and “PC (2003)”)
from [8] to provide a further basis for comparison. The
Fujitsu AP3000 was a distributed-memory parallel com-
puter running Solaris. It was based on a grid of 60
processing nodes, each of which had an UltraSPARC
300MHz processor and 256MB RAM. These nodes were
interconnected by a 2D wraparound mesh network that
used wormhole routing and that had a peak throughput
of 520Mbps. The “PC (2003)” results were produced
on a network of Athlon 1.4GHz workstations, each with
512MB RAM, that were linked together by a 100Mbps
switched Ethernet network.

HYDRA requires much more communication than the
Laplace transform inverter, as vector elements must be
exchanged between processors after every iteration. Al-
though the use of hypergraph partitioning minimises the
amount that must be sent, we observe that the speed-
ups achieved are accordingly lower than for the Laplace
transformer inverter – although it must be acknowledged
that the raw run-times are much faster for HYDRA.
It is somewhat galling that the most consistent speed-
ups are achieved on a decade-old machine that has now
been retired, closely followed by a network of modern
workstations! Indeed, the relatively poor performance of
the Camelot cluster in these results has led us to investi-
gate whether there might be a hardware or configuration
problem, and this is still on-going at the time of writing.

We also observe that the scalability of HYDRA on Ama-
zon EC2 is the worst of all five architectures. Although we
expected the speed-up and efficiency to be lower than on
the dedicated hardware platforms, it is still very surprising
to see just how badly HYDRA fares in the cloud. Hy-
pergraph partitioning does reduce the amount of data sent
dramatically (see [8] for further details), but clearly notby
enough. No information is available on how the physical
machines in the Amazon data-centres are interconnected,
but there must be a great deal of contention (both for
virtual machines accessing the network cards on the same
physical machine, and for access to the network fabric
itself). Furthermore we are at the mercy of relatively high
network latencies; on dedicated machines the physical
nodes are located close together and so latency is low,
but when running in the cloud our virtual machines may
not be located in the same physical machine, server rack
or even data centre.

These results demonstrate that the close coupling of pro-
cessors in HYDRA’s architecture is probably unsuitable
for tools designed to run in the cloud. Run-times are still
relatively low, so it is not infeasible to use HYDRA in
this environment, but to get the best out of large numbers
of processors (and remember we are charged per instance
that we use) we should look to a more loosely-coupled
tool design. These results should not be taken to suggest
that running HYDRA on a cloud service like EC2 is
entirely without merit, however. Although there is little
improvement in run-time, adding extra processors does
increase the size of model that can be analysed as each
processor only stores a portion of the global state-space.

V. CONCLUSION

This paper has investigated the scalability of two perfor-
mance analysis tools on Amazon’s Elastic Compute Cloud,
and has compared the parallel speed-ups and efficiencies
they achieve in that environment with those observed on
traditional dedicated computational clusters and networks
of workstations. We observed that the Laplace transform
tool, with its loosely-coupled master-slave architecture
with work delegated on request from a global queue,
scaled much better in the cloud than HYDRA, where
participating processors had to exchange large amounts
of data at every step.

For the future we intend to incorporate these lessons into
our next generation of performance analysis tools so that
they are able to be used efficiently in cloud computing
environments, as well as on clusters and networks of
workstations. The master-slave architecture with minimal
processor intercommunication has demonstrated scalabil-
ity on EC2 comparable with that achieved on dedicated
machines, and therefore appears a good blueprint for the
future. The biggest drawback is the limitation this imposes
of having to hold the entire state-space of the model in
the memory of one machine, whereas with HYDRA it
is distributed across multiple machines. Our recent work
on aggregation suggests ways in which the state-spaces
of models could be reduced in size, however [25]. We
will also investigate the benefits of exploiting Amazon’s
dedicated Elastic Block Store (EBS) to produce a disk-
based tool [26], [27], [28].

In the interim we could also ease the deployment of
our existing tools on EC2 by creating our own custom
AMIs that package them alongside MPI and other required
libraries. HYDRA does work on EC2, albeit without
scaling very well, and so such a move would still be useful
to performance analysts. Purpose-built tools could be made
to work far more efficiently, however.
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