An Empirical Study of the Scalability of Performance Analysis Tools in the Cloud

Nicholas J. Dingle
Department of Computing, Imperial College London,
180 Queens Gate, London SW7 2AZ.
Email: njd200@doc.ic.ac.uk

Abstract—Calculation of performance metrics such as steady- to be geared towards high-end scientific computing users
state probabilities and response time distributions in lage requiring hundreds of processors for many hours at a
Markov and semi-Markov models can be accomplished time however, while performance analysts usually require
using parallel implementations of well-known numerical much more modest (alth h still expensive) r r for
techniques. In the past these implementations have usually uc O,e odes (a. ou_g stife pe, sive) _esou cesio
been run on dedicated computational clusters and networks far less time. Somgthlng like Amazon’s Elastic Compute
of workstations, but the recent rise of cloud computing offes Cloud (EC2) service is therefore far better suited to
an alternative environment for executing such applicatiors. our requirements: computing power is available to all
It is important, however, to understand what effect moving © users, regardless of how many or how few processors are

a cloud-based infrastructure will have on the performance & ired. f | th d th ¢ t which i
the analysis tools themselves. In this paper we investigatee required, for as long as they nee eém al a cost which 1S

scalability of two existing parallel performance analysistools ~ far cheaper than that of equivalent in-house resources.

(one based on Laplace transform inversion and the other on . . _ .
uniformisation) on Amazon's Elastic Compute Cloud, and A key concern in using existing performance analysis tools

compare this with their performance on traditional dedicated In the cloud is how well those tools themselves perform
hardware. This provides insight into whether such tools can in this environment. The performance of parallel programs
be used effectively in a cloud environment, and suggests s often expressed in terms of their scalability; that is, to
factors which must be borne in mind when designing next- \yhat extent using extra processors reduces the overall run-
generation performance tools specifically for the cloud. . . - .
time. When producing scalability results for publication,
Key\Nords_Cloud Computing; Performance ana|ysis; Para”e| |t |S Usual to run the t00|S on |d|e maChIneS W|th I|tt|e |Oad
computing; Empirical study; on the network to minimise the effect of external factors
on their performance.

|. INTRODUCTION Such an ideal situation cannot be expected in a cloud

One common approach for the analysis of Markov andc0mputing environment, however. By its very nature, our
semi-Markov chains with many millions of states is to t00IS will have to share physical hardware (both processors
use the combined compute power and memory capacity gtnd network connections) with many other executing
a number of computers in parallel; for example, see [1]'applications. How our tools perform in this environment
[2], [3], [4]. Our own prior work has similarly exploited will therefore differ greatly from their performance in
parallel techniques to compute response time densitigi§leal conditions. It is important to understand how their

and distributions in very large Markov and Semi-Markov Performance scales, however, as cloud computing offers
chains [5], [6], [7], [8], [9]. the ability to make use of large numbers of processors far

- loit th fth ol) h .more cheaply than we could ourselves own. If our tools
0 exploit the power of these implementations, the USer i, ¢ efficiently use these extra resources then they will

typically required to possess a dedicated computation ither need to be modified, or replaced with tools that can.

cluster or network of workstations. Such hardware is,
however, expensive to buy and to run, requires sufficientn this paper we study the scalability of two of
space with associated power and cooling to house it, an@ur previously-presented performance analysis tools: a
staff to maintain it. With the coming pressure on academid-aplace transform-based response time analyser [6] and
research budgets in the UK, it is conceivable that individ-the HYpergraph-based Distributed Response-time Anal-
ual research groups will struggle to continue to acquireyser (HYDRA) [7], [12]. We compare their scalability in
such resources for themselves. Cloud computing holds th& cloud computing environment (Amazon EC2) with that
promise of dramatically reducing these overheads. Insteagbserved on a variety of parallel environments (including
of purchasing and maintain one’s own machines, the useparallel computers, dedicated clusters and networks of
instead pays for time on machines owned by a third partyworkstations) in the context of a case study analysis of

The idea of centralised computing services is not newthe Flexible Manufacturing System (FMS) Generalised
puting Stochastic Petri Net (GSPN) model.

and indeed UK academic users have access to large-
scale parallel computing resources either within their ownThe remainder of this paper is organised as follows.
institutions (e.g. Imperial College’s High Performance Section Il briefly describes the theoretical underpinnings
Computing Service [10]) or nationally via the EPSRC- and parallel implementations of the performance analysis
managed HECToR machines [11]. Such resources tentbols chosen for this study, before Section IIl describes

the Amazon EC2 environment and the Amazon Machinebetween passage times which start in a tangible state and
Image with which this study will be conducted. Section IV those which begin in a vanishing state:

then presents the observed scalability results for theezhos e Vg) ficq
tools across a range of parallel environments and discuss (s) = Lrgi (s—qg) k7 (8) + Lej (S—fm) hee

the implications. Finally, Section V concludes and consid- % g Pkl (8) + ey pin ficy

ers future work.

This system of linear equations can be expressed in
matrix—vector form. For example, when= {1}, V = {2}

Il. PERFORMANCEANALYSIS TOOLS and7 = {1,3,...,n} we have:

Llf(s)

We will study the scalability of two previously- sogi cme o —di

—p2n Loz P21
presented performance analysis tools: a Laplace tran 0 —aga - —agn Lij.(s) | e
form inverter [6] and the HYpergraph-based Distributed o : : : :
Response-time Analyser (HYDRA) [7], [12]. Although o Tan2 o s dnn L,3(5) n1

the core computation Ca”,iefj Ol_“ by both togls is ,repeate@;iven a particular (complex-valued) these equations
sparse matrix-vector multiplication, the way in which they ., pe solved for, -(s) by standard iterative numerical
]

parallelise th_e problem is d|f_fere_nt and consequently the3fechniques for the solution of systems of linear equations
place very different communication loads on the network, Ax — b form. I -(s) can then be inverted to yield
. Ly

For each tool, we briefly sketch the underlying theory andf_ﬂ_(t) using numerical techniques such as the Euler [13]
then describe its parallel operation. ozr] Laguerre [14] methods.

We have implemented a response time analysis pipeline for

A. Laplace Transform Inverter GSPN models, as shown in Fig. 1. Models are specified

marking into a non-empty set of target markingss: model, a state space generator produces the reachability

=inf{u>0: M(u) € j,N(u) > 0, M(0) =i} graph, along with a list of the source and destination mark-

ings that match their respective high-level descriptigxs.
where M (t) is the marking of the GSPN at timeand steady-state solver then computes appropriate weights for
N(t) denotes the number of state transitions which haveéhe source markings.

occurred by time. Pz corresponds o the f|rst?t|m.e that control is then passed to the distributed Laplace trans-
the system enters a state in the set of target sja&en form inverter, which employs the master-slave architectur
that the system began in the source stand at least snown in Fig. 1. It is the scalability of this portion of the

one state transition has occurrdd; is a random variable o0 that we will investigate later in this paper. The ineert

P,

ij

with probability density functiory;;(¢) such that: is written in C++ and uses the Message Passing Interface
b (MPI) [16] standard, so it is portable to a wide variety of
Pla < P-<b) = / fat)dt (0<a<b) parallel computers and workstation clusters.
1] 1] —

Initially, the master node determines the distinct values
In order to determinef;+(t) it is necessary to convolve of the complex variable at which the Laplace transform
the state holding-time density functions over all possibleof the response time distributiot;(s), will need to be
paths from state to all of the states iry. evaluated. Those values effor which there is no value

The calculation of the convolution of two functions in of L(s) already stored in the disk cache are added to a

space can be more easily accomplished by multiplyinggIObaI work queue.

their Laplace transforms together srspace and inverting At start-up, slave processors read into memory the reach-
the result. The calculation of ;(t) is therefore achieved ability graph as well as a list of the source and destination
by calculating the Laplace transform of the convolution of markings and the weights to apply to the distribution for
the state holding times over all paths betwéemdj and each source marking. Each slave processor then applies
then numerically inverting this Laplace transform. for an s-value from the global work queue. The slave

We proceed by means of a first-step analysis. That is, t(():alculates the corresponding valueldfs) by solving the

calculate the first passage time from statato the set of set of sparse linear equations using an appropriate \tera'q
> . . . numerical method such as Successive Over-Relaxation
target stateg, we consider moving from statieto its set

of direct successor statésand thence from states into (SOR) or Conjugate Gradient Squared (CGS).

states inj. The Laplace transform of the (exponential) Slave processors return computed valuesl¢f) to the
sojourn time density function of tangible markirigis = master. The master stores the returned value in memory
wi/(s+ p;), but for a vanishing marking the sojourn time and disk caches and immediately issues more work to
is 0 with probability 1, giving a corresponding Laplace the slaves if any is available. When all values fs)
transform of 1 for all values of. We therefore distinguish have been computed, the master runs through the Laplace

(7
“ ,, = Enhanced GSPN Distributed
DNAmaca State Laplace
*w high-level Space Transform
— ‘—ﬂ—‘ specification Generator Inverter
“ N

- ’Reachability DTMC N
-7 graph, with Steady
-7 source and State
T - destination Solver AN .
-7 states .
-7 -)

master
disk

cache
filter

master

memory cache
(1 /-3)

L(Sl)
LT inv
LT inverter i a
. with
with no L(s)
L(s)
evaluation master L(s)
processor . _n J

master

|

|

I

|

|

|

|

|

|

|

|

|

1

|

|

1

. |

evaluation !

|

I

|

|

|

|

|

|

. |
disk cache |
|
|
|
|
1
|
|

Figure 1. Response time analysis tool showing operatiomefdistributed Laplace transform inverter in detail [6].

transform inversion algorithm again, this time performingwhere the ratey > max; |¢;;| ensures that the DTMC is
all calculations and obtaining any values bfs) needed aperiodic.

from the memory cache. The resulting points on the
response time density curve are written to a disk file, and € calculation of the first passage time density between
displayed using the GNUplot graph plotting utility. two states has two main components. The first considers

the time to completer hops @ = 1,2,3,...). Recall that
The single global work queue with multiple servers en-in the uniformised chain all transitions occur with rate
sures a good load balance and very high utilisation of slavehis means that the convolution afof these holding-time
processors. In addition, there is no inter-slave communicadensities is the convolution ef exponentials all with rate
tion and the amount of master-slave communication is lowg, which is ann-stage Erlang density with ratg

We therefore expect this tool to exhibit good scalability.
Secondly, it is necessary to calculate the probability that

the transition between a source and target state occurs in
B. HYDRA exactlyn hops of the uniformised chain, for every value
of n between 1 and a maximum value. This is calcu-
Response time densities and quantiles in Continuous Timgited by repeated sparse matrix-vector multiplicatiorse T
Markov Chains (CTMCs) can also be computed throughyalue ofm is determined when the value of théh Erlang
the use of uniformisation (also known as randomiza-density function drops below a threshold value. After this
tion) [17], [18], [19], [20]. This transforms a CTMC into point, further terms are deemed to add nothing significant
one in which all states have the same mean holding timeyp the passage time density and are disregarded.
1/q, by allowing “invisible” transitions from a state to
itself. This is equivalent to a discrete-time Markov chain, The density of the time to pass between a source state
after normalisation of the rows, together with an assodiate? and a target statg in a uniformised Markov chain
Poisson process of rate The one-step transition proba- can therefore be expressed as the sumnofn-stage
bility matrix P which characterises the one-step behavioufErlang densities, weighted with the probability that the
of the uniformised DTMC is derived from the generator chain moves from state to state;j in exactly n hops
matrix Q of the CTMC as: (I < n < m). The response time between the non-empty
set of source statesand the non-empty set of target states
P=Q/q+1 (1) j therefore has probability density function:

From the resulting local matrix-vector products each pro-
cessor calculates and stores its contribution to the sum

s —1,—qt
Fa(t) = 2 : gt e 2 :ﬂl(;l) Zkej‘”z(cn)- After m iterations have completed, these sums
1, .

! el (n—1)! ke are accumulated onto an arbitrary master processor where

they are multiplied with the tabulated Erlang terms for

gt tem (n) eacht-point required for the passage time density. The

~ E —_— E T 2 ; : . o .
(n—1)! ot resulting points are written to a disk file and are displayed

using the GNUplot graph plotting utility.
where
a(n+) — p()p for n >0 3) Our previous work has observed that the use of hypergraph

partitioning to minimise communication during sparse

The key opportunity for parallelism in HYDRA is in the matrix-vector multiplication gives HYDRA good scalabil-
repeated sparse matrix-vector multiplications of Eq. 3. Toty on both parallel computers with fast interconnection
perform these operations efficiently in parallel it is neces networks and also on networks of workstations connected
sary to map the non-zero elementsB®fonto processors Via switched Ethernet [7], [12].

such that the computational load is balanced and commu-

nication between processors is minimised. To achieve this, 1. AMAZON ELASTIC COMPUTE CLOUD

we use hypergraph partitioning to assign matrix rows and_l_h A Elastic C Cloud (A EC?) i
corresponding vector elements to processors [21]. € Amazon astic Compute Cloud (Amazon) IS
a service that allows users both to purchase computing

Fig. 2 shows the architecture of the HYDRA tool. As with resources on-demand and also to reserve them to guarantee
the Laplace transform-based tool, the process of calcUayailability in the future. Central to EC2 are Amazon
lating a response time density begins with a high-levelyachine Images (AMIs), which are instantiations of the
model specified in an enhanced form of the DNAmMaca jnux or Windows operating system that are brought into
interface |anguage. NeXt, a probabilistic, hash-basaéd Stabeing by the user and run as virtual machines. Usage is
generator uses the high-level model description to producgharged per instance per hour, the current rate in the US-
the generator matriQ of the model's underlying Markov East region for the on-demand Linux instances used in this
chain as well as a list of the initial and targe’[statBs. Study being $0085 per instance per Hoszers manage

is constructed fronQ according to Eq. 1 and partitioned the creation and termination of instances via a web-page
using a hypergraph partitioning tool. or the Linux command line, and once instances are up and

The pipeline is completed by our distributed response timgunning it is possible tssh into them, as with a physical
density calculator, which is again implemented in C++Machine, and execute programs.

and uses MPI. Initially each processor tabulates the Erlang j,570n provide a range of standard AMIs, based on
terms for eacht-point required (cf. Eq. 2). Computation windows and various flavours of Linux, that come pre-

of these terms ends when they fall below a specifiednsialied with commonly-used packages such as MySQL,
threshold value. The terminating condition also deten&mineApache and Condor. They also provide tools to enable
the maximum number of hops: used to calculate the ysers to build their own AMIs containing exactly the

right-hand factor, a sum which is independent of applications and packages that they require, which can
Each processor reads in the rows of the matrix and thé&en be shared with the wider EC2 community. Both of our
corresponding elements of the vectd) that correspond tools described in the previous section require MPI and,
to its allocated partition. Each processor then determineglthough none of the standard Amazon AMIs include this,
which vector elements need to be received from and serihere is a user-produced AMI that does [22], [23]. We have
to every other processor on each iteration, therefore used this AMI as the execution environment for
our empirical study. Note that this AMI is only available

(n) j =
The vectorm*" is then cal_culated fon .1’.2’3.’ oot in the US-East region of EC2, and not in the European
by repeated sparse matrix-vector multiplications of the

form of Eq. 3. For each matrix-vector multiplication, each region.
processor begins by using non-blocking communication
primitives to send and receive remote vector elements,
while calculating the product of local matrix elements with Fig. 3 shows a 22-place GSPN model of a flexible manu-
locally stored vector elements. The use of non-blockingcyyring system [24], which forms the case study for this
operations allows computation and communication to Prohaper. The model describes an assembly line with three
ceed concurrently on parallel machines where dedicateg,pes of machinesM(1, M2 and M3) which assemble
network hardware supports this effectively. The processof,,,, types of partsi1, P2, P3 and P12). Initially, there
then waits for the completion of non-blocking operations ;¢ ;. unprocessed parts of each type, P2 andP3 in the

(if they have not already completed) before multiplying system. There are no parts of typd2 at start-up since

received remote vector elements with the relevant matri)fhese are assembled from processed parts of Bipand
elements and adding their contributions to the local matrix

vector product cumulatively. 1See http:/faws.amazon.com/ec2/pricing/ for a full listates

IV. RESULTS

High-Level Generator And Partitioner Time
pecification Transposer Calculator

Enhanced Matrix Distributed
DNAmaca State-Space Uniformiser Hypergraph Response "
— N

Figure 2. HYDRA tool architecture [12].

tP1ls

#P19) EC2 currently restricts a user to a maximum of 20 running

AMI images at any one time, and so this limits the
- 1o maximum number of parallel processors for which results
PlwM1

% S -~ I @ could be produced. We have previously demonstrated both

. % o tools running on more than 16 processors, however, and

) P% do not envisage any technical reasons why they could not
tP1j

#(P1s)

o , . do so on EC2 were this limit to be raised.

P12s P12M3 s P12wM3 P12 N

#(P12s) () I
E D o p{P A. Laplace Transform Inverter

3 Itpzl Wi

. Tab. | shows the run-times, speed-ups and efficiencies for
the calculation of response time densitiespoprocessors

for the FMS model withk = 6 using the Laplace
transform inversion tool. Corresponding graphs of speed-
up and efficiency are shown in Fig. 4. Note that the run-
times are averaged over 5 runs.

P2 P2 P20wM2 2

#(P2s)

These results are presented for four architectures. The
“PC (2004)” results are reproduced from [8] and were

produced on a network of PC workstations linked together
by 100Mbps switched Ethernet, each PC having an Intel
Pentium 4 2.0GHz processor and 512MB RAM.

tP3M2

#P3s)

Figure 3. The GSPN model of a Flexible Manufacturing Systéd.[

) We also present new results from a network of modern
P2 by the machines of typa/3. When parts of any type pcg 5 dedicated cluster and Amazon EC2. The “PC
are finished, they are stored for shipping on plagds, (2010)” results were produced on a network of Intel Core2
P2s, P3s and P12s. Duo 3.0GHz processor workstations with 4GB RAM,
For £ = 6, the GSPN’s underlying Markov chain has which were linked together by 1Gbps switched Ethernet.

537768 tangible states, while fok = 7 it has1639440 ¢ «camelot” cluster consists of 16 dual-processor dual-

t_angible s_tates. In bOt_h cases, we compute the reSPONIBre nodes, each of which is a Sun Fire x4100 with two 64-
time density from markings where there @ranprocessed Opteron 2.2GHz processors and 8GB of RAM. Nodes

parl]rts of t¥p?f1 andP2fto the ﬁrit marking encountered are connected with both Gigabit Ethernet and Infiniband
where a finished part of typ£12 has been produced. interfaces; the Infiniband fabric runs at 2.5Gbps and is

The two scalability metrics in which we are interested formanaged by a Silverstorm 9024 switch.

our tools are speed-uis4) and efficiency 7). Speed-up Each processor in the "“Amazon” results is an Amazon EC2

is the improvement gained from solving the problem ONsmall Instance running the AMI described in the previous

multiple processors compared with on a single processoly oy This s equivalent to a 1.0-1.2GHz Opteron or

and is calculated as: T Xeon processor with 1.7GB of RAM
1
Sp = T As discussed previously, we would expect the Laplace
here T is th . fth ? | dtransform tool to exhibit good scalability as there is very
w _erehl IS t e run-time of the tool on one processor and;yq inter-processor communication, and this is shown to
Ty 1s the run-time orp processors. be the case in these results. Indeed, it is noticeable that

Efficiency represents the proportion of time that a partic-on EC2 the speed-up trend is almost linear, while on the

ipating processor is busy, and is defined as: network of PCs from 2004 and (surprisingly) the Camelot
S cluster the speed-up trend may be beginning to level-off
E, = f after 16 processors. These results suggests that the master

slave architecture with minimal intercommunication is an

wherep is the number of processors used. ldedlly=p gnoropriate design for cloud-based parallel tools.
and E, = 1, but in practice the observed values will be

lower due to the overheads imposed by communication. 2See http://aws.amazon.com/ec2/. Retrieved April 2010.

PC (2004) PC (2010) Camelot Amazon
p T [Sp | Ep T [S» | BEp T [Sp [Ep T [S» | BEp
1 5096.0 1.0 1.0 1190.5| 1.00 | 1.00 || 4181.3| 1.00 | 1.00 || 2835.9| 1.00 | 1.00
2 2582.6 | 1.97 | 0.99 592.4 2.00 | 1.00 || 2149.1| 195 | 0.97 || 1522.4| 1.86 | 0.93
4 1298.4| 3.92 | 0.98 301.4 395 | 099 | 1083.1| 3.86 | 0.97 776.2 3.65 | 0.91
8 675.8 754 | 0.94 150.9 7.89 | 0.99 587.6 7.12 | 0.89 422.7 6.71 | 0.83
16 398.4 | 12.79 | 0.80 78.0 15.26 | 0.95 350.3 | 11.94 | 0.75 218.8 | 12.96 | 0.81
Table |

AVERAGE RUN-TIMES IN SECONDS(T), SPEEDUPS(SP) AND EFFICIENCIES(EP) FORp-PROCESSOR RESPONSE TIME DENSITY CALCULATIONS

IN THE FMSMODEL WITH k = 6 USING THELAPLACE TRANSFORM INVERSION TOOL

speed-up

L

PC (2004) ——
PC (2010) -
Camelot ---&--

Amazon

&
X

8
processors

(a) Speed-up

0.8

0.6

efficiency

0.2

T

PC (2004) ——

PC (2010) -
Camelot --o---
Amazon &

L

2 4 8
processors

(b) Efficiency

Figure 4. Speed-up and efficiency graphs feprocessor response time density calculations in the FM8emmwith & = 6 using the Laplace
transform inversion tool.
AP3000 PC (2003) PC (2010) Camelot Amazon

P T [5% [B T [Sp [Ep T [S [B T [S [Ep T [Sp [B

1 1243.3| 1.00 | 1.00 || 325.0| 1.00 | 1.00 | 76.8 | 1.00 | 1.00 || 178.1| 1.00 | 1.00 || 112.5| 1.00 | 1.00

2 630.5 1.97 | 0.99 || 258.7 | 1.26 | 0.63 || 435 | 1.76 | 0.88 98.7 | 1.81 | 0.90 || 166.2 | 0.68 | 0.34

4 328.2 3.78 | 095 197.1| 1.65| 041 | 23.2| 3.31 | 0.83 879 | 203 | 0.51 || 104.8| 1.07 | 0.27

8 182.3 6.82 | 0.85 || 143.0| 2.27 | 0.28 || 155 | 4.94 | 0.62 48.2 | 3.70 | 0.46 86.3 | 1.30 | 0.16

16 99.7 12.47| 0.78 || 1146 | 2.84 | 0.18 7.2 | 10.72 | 0.67 26.8 | 6.65 | 0.42 || 123.4| 0.91 | 0.06

Table 1l

AVERAGE RUN-TIMES IN SECONDS(T), SPEED-UPS(Sp) AND EFFICIENCIES(E)) FORp-PROCESSOR RESPONSE TIME DENSITY CALCULATIONS
IN THE FMS MODEL WITH k = 7 USINGHYDRA.

speed-up

Figure

5. Speed-up and efficiency graphs geprocessor response time density calculations in the FM8emwith k£ = 7 using HYDRA.

processors

(a) Speed-up

08

06

efficiency

04

L

T
AP3000 --®-

PC (2003) —+—

PC (2010) -
Camelot ---o---
Amazon ---&

8

processors

(b) Efficiency

B. HYDRA These results demonstrate that the close coupling of pro-
cessors in HYDRA's architecture is probably unsuitable

Tab. Il shows the run-times, speed-ups and efficiencies fofor tools designed to run in the cloud. Run-times are still
the calculation of response time densitiespoprocessors ~ 'elatively low, so it is not infeasible to use HYDRA in

for the FMS model withk = 7 using HYDRA. Corre- this environment, but to get the best out of large numbers
sponding graphs of speed-up and efficiency are shown iff processors (and remember we are charged per instance

Fig. 5. Once again, these run-times were averaged over &at we use) we should look to a more loosely-coupled
runs. tool design. These results should not be taken to suggest

that running HYDRA on a cloud service like EC2 is
These results are presented for five architectures. The “P€ntirely without merit, however. Although there is little
(2010)", “Camelot” and “Amazon” environments are as improvement in run-time, adding extra processors does
described in the previous section, and we also reprodud@crease the size of model that can be analysed as each
two sets of historical results ("AP3000” and “PC (2003)") processor only stores a portion of the global state-space.
from [8] to provide a further basis for comparison. The
Fujitsu AP3000 was a distributed-memory parallel com-
puter running Solaris. It was based on a grid of 60

gg%cl\jasmg nodes, eaghzs(gmvéhgzmha'?h an Ult:jaSP'A‘RCI'his paper has investigated the scalability of two perfor-
Z processor an - [NESE NOCes WerG,,hce analysis tools on Amazon’s Elastic Compute Cloud,

interconnected by a 2D wraparound mesh network tha nd has compared the parallel speed-ups and efficiencies

used wormhole rou“tlng and th?t had a peak throughpulrhey achieve in that environment with those observed on
of 520Mbps. The "PC (2003)" results were pmduc_edtraditional dedicated computational clusters and nets/ork
on a network of Athlon 1‘.4GHZ workstations, each with of workstations. We observed that the Laplace transform
51.2MB RAM, that were linked together by a 100Mbps tool, with its loosely-coupled master-slave architecture
switched Ethernet network. with work delegated on request from a global queue,

HYDRA requires much more communication than theSc@led much better in the cloud than HYDRA, where
Laplace transform inverter, as vector elements must b@articipating processors had to exchange large amounts

exchanged between processors after every iteration. Apf data at every step.

though the use of hypergraph partitioning minimises theroy the future we intend to incorporate these lessons into
amount that must be sent, we observe that the speedy; next generation of performance analysis tools so that
ups achieved are accordingly lower than for the Laplacqhey are able to be used efficiently in cloud computing
transformer inverter— although it must be aCknOWledge%nvironments, as well as on clusters and networks of
that the raw run-times are much faster for HYDRA. yorkstations. The master-slave architecture with minimal
It is somewhat galling that the most consistent speedpgcessor intercommunication has demonstrated scalabil-
ups are achieved on a decade-old machine that has noy, on EC2 comparable with that achieved on dedicated
been retired, closely followed by a network of modern machines, and therefore appears a good blueprint for the

workstations! Indeed, the relatively poor performance offyiyre. The biggest drawback is the limitation this imposes
the Camelot cluster in these results has led us to investigs having to hold the entire state-space of the model in

gate whether there might be a hardware or configuratiofhe memory of one machine, whereas with HYDRA it
problem, and this is still on-going at the time of writing. s gistributed across multiple machines. Our recent work
on aggregation suggests ways in which the state-spaces

zon EC2 is the worst of all five architectures. Although wemc models could be reduced in size, however [25]. We

- ill also investigate the benefits of exploiting Amazon’s
expected the speed-up and efficiency to be lower than ofy . - .
the dedicated hardware platforms, it is still very surpgsi ﬁledmated Elastic Block Store (EBS) to produce a disk-

to see just how badly HYDRA fares in the cloud. Hy- based tool [26], [27], [28].

pergraph partitioning does reduce the amount of data semf the interim we could also ease the deployment of
dramatically (see [8] for further details), but clearly gt our existing tools on EC2 by creating our own custom
enough. No information is available on how the physicalaMIs that package them alongside MPI and other required
machines in the Amazon data-centres are interconnectefibraries. HYDRA does work on EC2, albeit without
but there must be a great deal of contention (both forscaling very well, and so such a move would still be useful
virtual machines accessing the network cards on the samg performance analysts. Purpose-built tools could be made
physical machine, and for access to the network fabrigo work far more efficiently, however.

itself). Furthermore we are at the mercy of relatively high
network latencies; on dedicated machines the physical
nodes are located close together and so latency is low,
but when running in the cloud our virtual machines may [1] M. Benzi and M. Tuma, “A parallel solver for large-scale
not be located in the same physical machine, server rack = Markov chains,”Applied Numerical Mathematics, vol. 41,
or even data centre. pp. 135-153, 2002.

V. CONCLUSION

We also observe that the scalability of HYDRA on Ama-

REFERENCES

(2]

(3]

(4]

P. Buchholz, M. Fischer, and P. Kemper, “Distributechste
state analysis using Kronecker algebra, Hroceedings of
the 3rd International Conference on the Numerical Solution

of Markov Chains (NSMC’99), Zaragoza, Spain, September
1999, pp. 76-95.

W. Knottenbelt, “Parallel performance analysis of karg
Markov models,” Ph.D. dissertation, Imperial College, Lon
don, United Kingdom, February 2000.

A. Ogielski and W. Aiello, “Sparse matrix computations

on parallel processor arrays,” vol. 14, no. 3, pp. 519-530,

May 1993.

[17]

(18]

[19]

[5] J. Bradley, N. Dingle, W. Knottenbelt, and H. Wilson, [20]
“Hypergraph-based parallel computation of passage time

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

densities in large semi-Markov modeld,inear Algebra
and its Applications, vol. 386, pp. 311-334, 2004.

N. Dingle, P. Harrison, and W. Knottenbelt, “Respongedi

densities in Generalised Stochastic Petri Net models,” in

Proceedings of the 3rd International Workshop on Software
and Performance (WOSP’02), Rome, July 24th—26th 2002,
pp. 46-54.

——, “Uniformization and hypergraph partitioning foreh

[21]

distributed computation of response time densities in very

large Markov models,Journal of Parallel and Distributed
Computing, vol. 64, no. 8, pp. 908-920, August 2004.

N. Dingle, “Parallel computation of response time déesi

and quantiles in large markov and semi-markov models,”

Ph.D. dissertation, Imperial College London, United King-
dom, 2004.

P. Harrison and W. Knottenbelt, “Passage time distidng
in large Markov chains,” irProceedings of ACM SSGMET-
RICS 2002, Marina Del Rey CA, June 2002, pp. 77-85.

Imperial College High Performance Computing
Service, http://www3.imperial.ac.uk/ict/services/
teachingandresearchservices/highperformancecongputin

HECToR: UK National Supercomputing Service, www.
hector.ac.uk.

N. Dingle, P. Harrison, and W. Knottenbelt, “HYDRA:
HYpergraph-based Distributed Response-time Analyser,” i
Proceedings of the International Conference on Paralléel
and Distributed Processing Techniques and Applications
(PDPTA'03), Las Vegas NV, USA, June 23rd—-26th 2003,
pp. 215-219.

J. Abate, G. Choudhury, and W. Whitt, “An introductiom t
numerical transform inversion and its application to proba
bility models,” in Computational Probability, W. Grassman,
Ed., Kluwer, Boston MA, 2000, pp. 257-323.

——, “On the Laguerre method for numerically inverting
Laplace transforms,INFORMS Journal on Computing,
vol. 8, no. 4, pp. 413-427, 1996.

W. Knottenbelt, “Generalised Markovian analysis ohéd
transition systems,” Master’'s thesis, University of Cape
Town, Cape Town, South Africa, July 1996.

W. Gropp, E. Lusk, and A. Skjellunsing MPI: Portable
Parallel Programming with the Message Passing Interface.
Cambridge MA: MIT Press, 1994.

(23]

[24]

[25]

[26]

[27]

(28]

G. Bolch, S. Greiner, H. Meer, and K. TrivedQueueing
Networks and Markov Chains. Wiley, August 1998.

B. Melamed and M. Yadin, “Randomization procedures
in the computation of cumulative-time distributions over
discrete state Markov processe®perations Research,
vol. 32, no. 4, pp. 926-944, July—August 1984.

A. Miner, “Computing response time distributions ugin
stochastic Petri nets and matrix diagrams, Piroceedings
of the 10th International Workshop on Petri Nets and
Performance Models (PNPM'’03), Urbana-Champaign, IL,
September 2nd-5th 2003, pp. 10-19.

J. Muppala and K. Trivedi, “Numerical transient anadys
of finite Markovian queueing systems,” iQueueing and
Related Models, U. Bhat and |. Basawa, Eds. Oxford
University Press, 1992, pp. 262—284.

U. Catalyurek and C. Aykanat, “Hypergraph-partitiog-
based decomposition for parallel sparse-matrix vector mul
tiplication,” vol. 10, no. 7, pp. 673—-693, July 1999.

P. Skomoroch, “Data Wrangling Image: Fedora Core
6 MPI Compute Node with Python Libraries,” AMI
ID: ami-3e836657, http://developer.amazonwebservices.
com/connect/entry.jspa?categorylD=101&externallC&70
Retrieved April 2010.

“MPI cluster

programming with Python and
Amazon EC2,” in Proceedings of the 6th Annual
Python Community Conference (PyCon 2008),
Chicago, March 2008, http://www.datawrangling.com/
mpi-cluster-with-python-and-amazon-ec2-part-2-of-3.
Retrieved April 2010.

G. Ciardo and K. Trivedi, “A decomposition approach for
stochastic reward net modelsPerformance Evaluation,
vol. 18, no. 1, pp. 37-59, 1993.

M. Gunther, N. Dingle, J. Bradley, and W. Knottenbelt,
“Passage-time computation and aggregation strategies for
large semi-markov processesPerformance Evaluation,
under revision.

D. Deavours and W. Sanders, “An efficient disk-based too
for solving large Markov modelsPerformance Evaluation,
vol. 33, no. 1, pp. 67-84, June 1998.

M. Kwiatkowska and R. Mehmood, “Out-of-core solutions
of large linear systems of equations arising from stocbasti
modelling,” in Proceedings of Process Algebra and Perfor-
mance Modelling (PAPM’02), Copenhagen, Denmark, July
25th—26th 2002, pp. 135-151.

W. Knottenbelt and P. Harrison, “Distributed disk-béds
solution techniques for large Markov models,”Rnoceed-
ings of the 3rd International Conference on the Numerical
Solution of Markov Chains (NSMC’'99), Zaragoza, Spain,
September 1999, pp. 58-75.

